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Introduction

This report is an introduction to the K-theory of topological spaces, with a
focus on its connection to the K-theory of C*-algebras. We define the K-
group of topological spaces and prove the functoriality of the K-theory, and
show that the two K-theories are equivalent in some cases.

1 Vector Bundles

Let X be a topological space. To study its K-theory, we need to first consider
complex vector bundles over it. A vector bundle is a specific type of a
fiber bundle, which we define hereafter (the definition can be found in almost
any text on algebraic topology; here we follow [2]):

Definition 1. Let X be a topological space, and consider the triple ξ =
(E, π,X), where E is a space and π : E → X a continuous and surjective
map.

Let F be another topological space. A trivialization of π over an open
set U ⊆ X is a homeomorphism ϕ : π−1(U)→ U × F such that the diagram

π−1(U) U × F

U

π

ϕ

proj1

commutes. Here, proj1 is the canonical projection map. We call the space F
the fiber, and we say that π is trivial over U .

We say that π is locally trivial if there exists an open covering {Ui} of X
such that π is trivial over each Ui ⊆ X. We say that the triple ξ = (E, π,X)
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is a fiber bundle over X if it is locally trivial. By abuse of notation, we
may also say that π is a fiber bundle over X.

It is clear that for any x ∈ X, π−1(x) is homeomorphic to F , so we also
call Ex = π−1(x) the fiber over x. We call a fiber bundle a vector bundle when
F is endowed with some vector space structure. There are many different
types of vector bundles: in differential geometry, one is interested in C∞-
vector bundles, and in algebraic geometry one is interested in algebraic vector
bundles over schemes. In K-theory, however, we are most interested in real or
complex vector bundles over plain topological spaces. Here, we will focus on
complex vector bundles to illustrate the connection with C*-algebras; most of
the theory is completely analogous for real vector bundles. Hereafter, when
we say “vector bundle”, we will mean a complex vector bundle, which we
define below.

Definition 2 ((complex) vector bundle). A complex vector bundle over
a topological space X is a fiber bundle ξ where each fiber F = π−1(X) is
a finite-dimensional C-vector space, such that the vector space structure on
π−1(X) is natural, in the sense that the trivialization map ϕ restricted to x,
ϕ|{x}, induces an isomorphism of vector spaces π−1(x)→ {x} × Cn ∼= Cn. If
each fiber π−1(x) is isomorphic to Cn, then n is called the dimension of the
vector bundle ξ.1

To obtain the definition of a real vector bundle, one may simply replace
C with R.

Remark. It is not necessary that a vector bundle has a fixed dimension, if
the base space X is disconnected.

Example 3 (trivial vector bundle). The simplest vector bundle over any
topological space X is the triple θn = (X × Cn, π,X), where π is just the
canonical projection map proj1. Clearly, each fiber has dimension n; we call
this vector bundle the trivial bundle of dimension n over X.

With an appropriate notion of morphisms, the vector bundles over X
form a (small) category.

Lemma 1. Let X be a topological space. The complex vector bundles over
X form a category, where a morphism (E, π,X)→ (F, ρ,X) is a continuous
map f : E → F such that the diagram:

1Our definition is a bit different from the definition given in [5], but they are equivalent.
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E F

X

π

f

ρ

commutes, and such that f |π−1(x) : π−1(x)→ ρ−1(x) is a linear map.

Proof. To show that this is indeed a category, we need to verify that (1) there
is an identity morphism, and (2) the composition of morphisms is associative.

We first define the notion of composition of morphisms. Let ξ = (E, π,X),
η = (F, ρ,X) and ψ = (G, σ,X) be vector bundles over X, and f : ξ → η,
g : η → ψ morphisms. Consider the following diagram

E F G

X

f

π

g

ρ
σ

and we may define the composition of g with f to be g ◦ f .
Note that this may cause a slight notional confusion: the composition g◦f

of morphism is defined as the set-theoretic composition of the continuous
maps g and f . This is, however, certainly well-defined because the above
diagram clearly commutes.

Now, we need to verify that (g ◦ f)|π−1(x) : π−1(x) → σ−1(x) is a linear
map: this is, again, clearly true, since the composition of linear maps is again
linear. Thus, our notion of composition is well-defined.

The identity morphism is taken as the identity map id, which is certainly
continuous; the restriction is again the identity map, which is certainly linear.
The associativity of composition is also easy to verify, as it follows from the
associativity of function composition.

Corollary 2. An isomorphism between two bundles ξ = (E, π,X) and η =
(F, ρ,X) is a homeomorphism h : E → F such that the diagram

E F

X

π

h

ρ
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commutes, and such that h|π−1(x) : π−1(x) → ρ−1(x) is an isomorphism of
vector spaces. In this case, we call the two vector bundles ξ and η isomorphic
(or ξ ∼= η), and denote the isomorphism class of ξ as 〈ξ〉. This is indeed an
isomorphism in the category of vector bundles.

We can also define a direct sum operation on vector bundles, analogous
to that of C*-algebras.

Definition 4 (direct sum). Let ξ = (E, π,X) and η = (F, ρ,X) be two
vector bundles over X. The direct sum of ξ and η, or ξ ⊕ η, is defined to
be the triple (G, ν,X), where

G = {(v, w) ∈ E × F | π(v) = ρ(w)},

ν(v, w) = π(v) = ρ(w), and where ν−1(x) = π−1(x) × ρ−1(x) is given the
direct sum vector space structure.

Finally, we may also define the tensor product of vector bundles (following
the definition given in [3]), which does not have a direct analogue in operator
K-theory.

Definition 5 (tensor product). Let ξ = (E, π,X) and η = (F, ρ,X) be two
vector bundles over X. We define the tensor product ξ ⊗ η. as the vector
bundle where each fiber over x ∈ X is the tensor product of the fibers of ξ
and η over x. More specifically, we define ξ ⊗ η = (G, σ,X) as the vector
bundle with the fiber space defined as the disjoint union

G = tx∈Xπ−1(x)⊗ ρ−1(x),

with the topology on G defined below.
For each open set U ⊆ X over which F and G are trivial, we choose two

isomorphisms h : π−1(U) → U × Cn, i : ρ−1(U) → U × Cm, where n and m
are the dimensions of ξ and η, respectively. The topology TU on G is the
topology such that each fiberwise tensor product map

h⊗ i : π−1(U)⊗ ρ−1(U)→ U × (Cn ⊗ Cm)

is a homeomorphism.

Remark. This construction is well-defined, as we can show that it is indepen-
dent of the choice of h and i. Consider the continuous maps f : U → GLn(C)
and g : U → GLm(C), where GLn(C) is the (multiplicative) group of n × n
nonsingular C-matrices (i.e., Cn automorphisms). By definition any other
choice of h and i, say h′ and i′, can be obtained by composing the second
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entry with f and g, respectively. That is, if h(u) = (x, v), then we have
h′(u) = (x, f(x)(v)) for some f(x) ∈ GLn(C).

Now, let us consider h ⊗ i. We know that Cn ⊗ Cm ⊆ Cnm, so we can
apply the aforementioned construction and compose the second entry with
f ⊗ g, which are a family of continuous maps U → GLmn(C).

Then, if we restrict our construction to an open subset V ⊆ U , we can see
that the subset topology of V in U is the same as the topology TV , as local
trivializations restrict to local trivializations on open subsets. Therefore our
construction is well-defined, independent of the choice of h and i.

2 The K-group of vector bundles

To obtain the K-theory of topological spaces (via vector bundles), we need
to form Grothendieck groups out of vector bundles. Just like in operator
K-theory, we apply the Grothendieck construction to an abelian semigroup,
which we define below.

Proposition 3. The set of all isomorphism classes of vector bundles ξ over
a topological space X forms a abelian semigroup, where addition is defined
as 〈ξ〉+ 〈η〉 = 〈ξ ⊕ η〉. We denote this abelian semigroup by Vect(X).

Proof. We need to show that addition is associative and commutative.
To prove that addition is associative, we need to show that (〈ξ〉+ 〈η〉) +

〈ψ〉 = 〈ξ〉+(〈η〉+〈ψ〉), i.e., 〈(ξ ⊕ η)⊕ ψ〉 = 〈ξ ⊕ (η ⊕ ψ)〉. This boils down to
the fact that the direct sum of vector spaces is associative up to isomorphism.

The commutativity of addition follows from the fact that the direct sum
of vector spaces is commutative.

Taking the Grothendieck construction on Vect(X), we obtain the Grothendieck
group K0(X) = G(Vect(X)). Sometimes, we also write K(X) instead of
K0(X). We often write the image of 〈ξ〉 under the Grothendieck map,
γ : Vect(X)→ K0(X), γ(〈ξ〉), as [ξ].

However, unlike the Grothendieck group of a C*-algebra, the Grothendieck
group of a topological space is not only an abelian group but also a commu-
tative ring, inheriting its multiplication operation from Vect(X), which we
proceed to define below.

Definition 6. We define multiplication on Vect(X) as 〈ξ〉 · 〈η〉 = 〈ξ ⊗ η〉.

Corollary 4. Vect(X) forms a commutative semi-ring under the addition
and multiplication operations defined above.
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Proof. To show that multiplication is commutative, it suffices to show that
the tensor product of vector bundles is symmetric up to isomorphism. Let
ξ = (E, π,X) and η = (F, ρ,X) be vector bundles over X. Given any
h : π−1(U)→ U × Cn and i : ρ−1(U)→ U × Cm, we have:

h⊗ i : π−1(U)⊗ ρ−1(U)→ U × (Cn ⊗ Cm)

and
i⊗ h : ρ−1(U)⊗ π−1(U)→ U × (Cm ⊗ Cn).

The domain and codomain are isomorphic (this follows from the symme-
try of the tensor product of vector spaces), and the two maps are equivalent,
since the entries of h⊗ i (and i⊗ h), represented as a matrix, are simply the
product of the entries of h and i. Thus we have h⊗ i ∼= i⊗ h. This follows
that ξ ⊗ η ∼= η ⊗ ξ, and thus 〈ξ〉 · 〈η〉 = 〈η〉 · 〈ξ〉.

Next, we need to show that multiplication is associative, and this is an
easy consequence of the fact that the tensor product of vector spaces is
associative.

Finally, we need to show that multiplication distributes over addition.
Again, this is a direct consequence of the fact that the tensor product of
vector spaces distributes over the direct sum.

Definition 7. Let (〈ξ1〉, 〈η1〉) and (〈ξ2〉, 〈η2〉) be isomorphism classes in
K(X) = G(Vect(X)). We define the multiplicative operation on K(X) as

(〈ξ1〉, 〈η1〉) · (〈ξ2〉, 〈η2〉) = (〈(ξ1 ⊗ ξ2)⊕ (η1 ⊗ η2)〉, 〈(ξ1 ⊗ η2)⊕ (ξ2 ⊗ η1)〉).

It is routine to verify that this operation is associative, commutative and
distributive over addition [4].

Under this multiplicative operation, K(X) forms a commutative ring,
which is also called the K-theory ring of X, where the multiplicative identity
element is θ1, the trivial vector bundle over X of dimension 1.

3 The K-functor

Just like in operator K-theory, K(−) = K0(−) is a functor to the category
Ab of abelian groups. In fact, K(−) is a functor from the category Top of
topological spaces to the category CRing of commutative rings. However,
unlike the K0 functor in operator K-theory, which is covariant, our functor
K0 is contravariant.

In order to prove the functoriality of K0, we need to first define the notion
of the pullback of vector bundles.
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Definition 8. Let X, Y be topological spaces and f : X → Y a continuous
map. Let η = (F, ρ, Y ) be a vector bundle over Y . Then we define the
pullback of η along f , or f∗η, to be the triple (E, π,X), where

E = {(x, v) ∈ X × F | f(x) = ρ(v)},

such that π(x, v) = x, and where the fiber π−1(x) = ρ−1(f(x)) inherits its
vector space structure from η.

Remark. For the categorically minded, the pullback of f∗η is nothing other
than the category-theoretic pullback of ρ along f :

E F

X Y

π ρ

f

If the diagram above is a pullback square, then (E, π,X) is the pullback
of ρ along f .

Naturally, this pullback induces a pullback map f∗ : Vect(Y )→ Vect(X),
mapping 〈η〉 to 〈f∗η〉. This pullback map is compatible with both the direct
sum and the tensor product of vector bundles.

Lemma 5. The pullback map is compatible with addition and multiplication
on Vect(Y ), that is:

(1) f∗(〈η〉+ 〈ψ〉) = f∗(〈η〉) + f∗(〈ψ〉);

(2) f∗(〈η〉 · 〈ψ〉) = f∗(〈η〉) · f∗(〈ψ〉).

Proof. Showing (1) is equivalent to showing that f∗(η ⊕ ψ) ∼= f∗η ⊕ f∗ψ.
Showing (2) is equivalent to showing that f∗(η ⊗ ψ) ∼= f∗η ⊗ f∗ψ. Both can
be shown by a diagram chase.

Next, we may extend this pullback construction to K(X). Define the
map f∗ : K(Y ) → K(X) (note that we are abusing notation here) by
f∗([η]) = [f∗η]. Again, one can verify that f∗ is compatible with addition
and multiplication in K(Y ), and thus f∗ is a ring homomorphism. This
brings us to our first main theorem:
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Theorem 6 (functoriality of K0). Any continuous map of topological spaces
f : X → Y induces a ring homomorphism K0(f) = f∗ : K0(Y ) → K0(X),
such that the diagram

Y X

K0(Y ) K0(X)

f

K0(f)

commutes.
In other words, K0 : Topop → CRing is a contravariant functor from the

category of topological spaces to the category of commutative rings, sending
each object (i.e., topological space) X in Top to its K-theory ring K0(X),
and each morphism (i.e. continuous map) f : X → Y to the pullback map
f∗ : K0(Y )→ K0(X).

4 Connections to the K-theory of C*-algebras

Hereafter, we will assume that the base space X is compact and Hausdorff.
For the sake of simplicity, we will also assume that X is connected (so that
bundles over X have fixed dimension). Then, we know that C(X), the vec-
tor space of C-valued functions on X2, is a unital C*-algebra. We wish to
study the relationship between X and C(X) from a K-theory point of view.
Naturally, the big question we are interested is the relationship between their
respective K-groups, K0(X) and K0(C(X)). It turns out that they are in
fact isomorphic as abelian groups.

Theorem 7. Let X be a compact, connected and Hausdorff topological space.
Then D(C(X)) ∼= Vect(X) as abelian semigroups. Furthermore, we have
K0(X) ∼= K0(C(X)) (as abelian groups).

Proof. For each projection p ∈ P∞(C(X)), we can associate a vector bundle
ξp = (Ep, π,X) over X in the following way. Let

Ep = {(x, v) ∈ X × Cn | v ∈ p(x)(Cn)},

noting that Mn(C(X)) = C(X,Mn(C)). Set π(x, v) = x, and give the fiber
π−1(x) = p(x)(Cn) the vector space inherited from Cn, i.e., such that the
fiber is a subspace of Cn.

2Since X is compact, we have C(X) = C0(X) = Cb(X).
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One can verify that ξp ∼= ξq if and only if p ∼0 q for any p, q ∈ P∞(C(X)),
and that ξp⊕q ∼= ξp ⊕ ξq.

Now, consider the correspondence map V : D(C(X)) → Vect(X), de-
fined as [p]D 7→ 〈ξp〉. By the correspondence of ∼= with ∼0, we know that
this map is well-defined and injective. Moreover, we know that this map is
additive (i.e., V ([p]D + [q]D) = 〈ξp〉+ 〈ξq〉).

To show that V is an isomorphism, however, we will also need to show
that it is surjective. Here, we will need a theorem [6] originally proposed by
J.-P. Serre and stated in present form by R. Swan.

Theorem 8 (Serre-Swan). For each vector bundle ξ over a compact and
Hausdorff space X, there is another bundle η over X, such that ξ ⊕ η is the
trivial bundle, i.e., ξ ⊕ η ∼= θn for some n.

Proof. The proof can be found in either [6], or in a more modern form in
[3].

Now we can return to the proof of Theorem 7.

Proof of Theorem 7 (continued). Let ξ = (E, π,X) be any bundle over X.
We can show that there is a p ∈ P∞(C(X)) such that V ([p]D) = ξ. By
Serre-Swan, we know that there is a bundle η = (F, ρ,X) such that ξ ⊕
η = θn for some n. In other words, we know that for each respective fiber
over x, we have π−1(x) ⊕ ρ−1(x) ∼= Cn. Then we can take p(x) as the
canonical projection map Cn → π−1(x), and as such p : X → Mn(C) is a
continuous map, i.e. p ∈ Pn(C(X)). Moreover, we have ξp = ξ. Therefore,
we may conclude that V is surjective. Since V is bijective and additive, it is
an isomorphism of semigroups. It follows immediately that K0(C(X)) and
K0(X) are isomorphic as abelian semigroups.

For the categorically minded reader, we may intepret Theorem 7 as a
result about functors. Consider the (contravariant) functor C(−) : CHop →
C*Alg from the category of compact Hausdorff spaces to the category C*Alg
of C*-algebras. This functor takes each space X to the C*-algebra of func-
tions C → C, and each continuous map f : X → Y to a ∗-homomorphism
f∗ : C(Y )→ C(X) defined by f∗h = h ◦ f . It is not hard to verify that this
is indeed a functor.

Since CH is a full subcategory of Top, we can restrict K0 (and ignore the
multiplicative structure on the K-theory ring) to a functor CH→ Ab. The-
orem 7 means that the functors K0 and K0 ◦C(−) are naturally isomorphic
as functors CHop → Ab.

Thus, we see that the K-theory of topological spaces and of (complex) C*-
algebras are closely connected. Nevertheless, operator K-theory is in a sense
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more “general” than topological K-theory, in the sense that commutativity
is not required (hence the name “non-commutative geometry”), and as such
there is no natural ring structure on K0(C), unless C = C(X) for some
compact Hausdorff space X.

5 Further Topics

The K-theory of topological spaces yield many important topological invari-
ants that could be used to study the property of those spaces. The Chern
character is one of them: it is a ring homomorphism ch : K0(X)→ Hev(X; Q)
from the K-theory ring of X into the even cohomology ring of X. The Chern
character is exactly the equivalent of the cyclic cohomology of C*-algebras in
topology, but the theory takes a lot to develop, so we refer readers to either
[3], or [1] for a perspective leaning towards differential geometry.

6 Conclusion

We have introduced the basics of topological K-theory, defined the K-theory
ring K(X) of a topological space X, and proved the functoriality of the
K-functor K0, in a development analogous to the K-theory of C*-algebras.
Furthermore, we have also outlined the close connection between topological
K-theory and operator K-theory, and proved the equivalence of the two K-
theories when X is compact Hausdorff.
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