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Abstract
Generalized algebraic datatypes have been a part of the

OCaml type system, but there has been no formal speci-

fication of them. In this talk, we present our ongoing work

on mechanizing the metatheory of a core language for mod-

ern OCaml and formally proving the soundness of this core

language. Our core language supports structural polymor-

phism, recursive types, and type-level equality witnesses,

which are the defining features of OCaml type inference as

of version 4.11.
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1 Introduction
Generalized algebraic datatypes (GADTs) have been anOCaml

language extension since version 4.00, and is now arguably

an integral part of theOCaml type system: prominent projects

built in OCaml, such as Coq [7] and Tezos [8], use GADTs

in production.

Type inference for GADTs is known to be a difficult prob-

lem, in particular when one wants principality. It is also

tricky to implement, and OCaml has seen a number of sound-

ness bugs over the years. We intend to address these prob-

lems by mechanizing the metatheory [1] of a core language

of OCaml, equipped with three defining features of the mod-

ern OCaml type system — structural polymorphism, recur-

sive types, and type-level equations — the last of which is

equivalent to GADTs.

Formally, OCaml GADTs are based on ambivalent type

inference [5], which offers principality. However, the sound-

ness of the ambivalent type system was obtained through a
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translation into another type system. When trying to prove

subject reduction for ambivalent types with type annota-

tions in a more direct way, we actually discovered that it

failed, and that this failure came from a lack of principality

in the type inference. We have been able to fix this failure

by enforcing a well-formedness condition on graph types

containing rigid type variables.

We build ourwork on one of the authors’ previouswork [3],

which contains a formalized metatheory of a variant of ML

with structural polymorphism and recursive types; we ex-

tend the aforementioned work with type-level equations

and a notion of ambivalence [5] in types, which serves to

distinguish rigid (i.e., “existential”) type variables 𝑎, which

are constrained by type equations and thus could not be

freely instantiated, and flexible variables 𝛼 , which are type

variables in the usual sense, and which is necessary during

type inference.

2 Basic setup
Following [3], we begin with a slightly unusual setup. Types

are trivial in our setup, consisting only of variables:

𝜉 ::= 𝛼.

In our Coq development, we use the locally nameless en-

coding [2] for variable bindings, and a type is represented

as:

Inductive typ : Set :=

| typ bvar : N→ typ
| typ fvar : var → typ.

The kinds are more unusual, and contain all the interesting

information. A kind in our formalization represents all the

constraints on a type:

𝜅 ::= •𝑟 | (𝐶, {𝑙1 : 𝜉1, . . . , 𝑙𝑛 : 𝜉𝑛})𝑟
𝑟 ::= 𝑎 | 𝑟 .𝑙

where 𝑟 is a list of rigid paths which should all be equal to

the type described by this kind.

The tuple part of a kind is actually represented in our Coq

development as a record of four entries (two of the entries

serve to make sure that𝜓 is well-formed):
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Record ckind : Set := Kind {

kind cstr : Cstr.cstr ;
kind valid : Cstr.valid kind cstr ;
kind rel : list (Cstr.attr × typ);
kind coherent : coherent kind cstr kind rel }.

We refer the reader to [3] formore on this constraint-based

type system.

3 Formalizing ambivalence
In our work, we make a distinction between simple types and
simple kinds, which are types and kinds that actually occur in
the source program, and ambivalent types (and kinds), which
are the types and kinds that appear internally in our type

system. Simple types are akin to the usual ML types:

𝜏 ::= 𝛼 | 𝑎 | 𝜏 → 𝜏 | 𝜏 = 𝜏 .

Simple kinds are just the kinds that use simple instead of

ambivalent types.

One important difference between simple and ambivalent

types is that simple types are just trees as one would usu-

ally think. However, since types could be recursive and thus

contain circular references, the ambivalent types are actu-

ally graphs. A simple type can, however, be converted to

an ambivalent type by pointing the recursive variable ref-

erences to the correct node, which we define in a function

graph of tree type (see [6], ML SP Definitions.v for

details).

Besides the basic expression forms already present in [3],

we add four new kinds of terms coming from [5]:

𝑀 ::= ... | Eq | use𝑀1 : 𝜏1 in𝑀2 | 𝜈 (𝑎)𝑀 | (𝜏)

We also modify the rules relating to the well-formedness

of kinds and types according to [5], since adding ambivalent

type variables also adds new constraints to the types and

kinds. The missing well-formedness condition we mentioned

in introduction can be described as follows.

Wf-Kind-Attrs

∀𝑟 ∈ 𝑟 Δ ⊢ 𝑟 ↦→ 𝐶

∀(𝑙, 𝛼) ∈ 𝑅 s.t. 𝐶 ⊢ unique(𝑙) 𝐾 (𝛼) = 𝜅𝑟 ′ 𝑟 .𝑙 ∈ 𝑟 ′

𝐾 ;Δ ⊢ (𝐶, 𝑅)𝑟

Here, Δ is a set of equations on simple types, and Δ ⊢
𝑎.𝑙1 . . . 𝑙𝑛 ↦→ 𝐶 means that for any solution 𝜃 of the equa-

tions in Δ, the type constructor at position indicated by the

path 𝑙1 . . . 𝑙𝑛 in 𝜃 (𝑎) should correspond to the constraint 𝐶 .

We require that all unique attributes for the constraint 𝐶 ,

corresponding to the arguments of this type constructor, do

propagate the rigid paths to the types they point to. There is

an ongoing OCaml PR [4] that enforces the same condition

using internal levels.

Our typing rules basically follow [5], except that we adapt

the rules to our new typing discipline. For the sake of simplic-

ity, we do not present the rules here; the interesting reader

may consult our Coq development ([6], ML SP Definitions.v).

4 Coq development
Currently, we are working on proving the soundness of

our type system by showing progress and subject reduction.

Since we have changed many definitions in the original de-

velopment [3] (the file ML SP Definitions.v has doubled
to reach about 900 lines), many proofs need to bemodified. At

the time of this submission, the file ML SP Infrastructure.v,
which has almost been completely adapted to the new type

system, has seen about 130 extra lines. However, we expect

many more lines added to ML SP Soundness.v, which con-

tains the proofs of the main soundness theorems.

As we have just mentioned, our Coq development differs

from typical proof projects in Coq, in that instead of starting

from scratch, we base our development on a project that was

mostly dormant for about 10 years. Thus, maintaining our

proof scripts become an important engineering task. There

has been few accounts of maintaining Coq projects over long

time spans, and we intend to discuss the proof engineering

aspects of our project as an interesting case study.
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