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Abstract

This talk is a report on, as well as a defense of the usefulness of dependent types for developing provably correct programs.
We believe that dependent types—and dependently-typed programming in Coq in particular—could allow for faster and
safer development. There are already several accounts about the utility of dependent types in practical program development,
and in real-world applications. Here we add to these accounts by outlining our experience in developing tree algorithms
for succinct data structures and proving them with the help of dependent types.

1 Motivation: Formalization of Red-black Trees

Ever since its invention, dependently-typed programming has been mostly of theoretical interest. However, recent work has showed
that dependently-typed programming could also be useful in practical programming, especially when the program being developed
has strict security requirements or complex invariants [4, 13]. Here, we present another case where dependently-typed programming
was used to verify such algorithms—in this case, an algorithm that looks innocuous but in fact has rather byzantine invariants.

The Problem Implementing deletion for purely functional red-black trees was long known to be a tricky problem. Kahrs
and Germane and Might have given relatively simple algorithms [6, 7], but neither comes with a formal proof, and both proved
difficult to refactor for our purposes. Also, we could not easily reuse existing Coq formalizations of red-black trees (such as [2])
because our application (to succinct data structures1 [1]) required nodes decorated with meta-data. We started with a direct
translation of Kahrs’ algorithm to Coq, but soon we found ourselves unconvinced of the correctness of our implementation
and thus further progress was stalled.

Can Types Help? Type-driven development has been advocated in the functional programming community for a long time,
but does it apply as well when we want to fully prove an algorithm? Dependent types in Coq allow one to enforce invariants of data-
structures and algorithms within their types. It is tempting to use them to implement an algorithm together with its proof, possibly
refining the invariants on the go. We will compare that with the more traditional approach of using only ML-style polymorphic types,
and writing external lemmas to state the desired correctness properties (this is the approach we used in our main development [1]).

For example, let btree be the type of colored binary trees. We can implement balancing in direct-style along the following
lines (see [1, file dynamic_redblack.v] for all details):

Definition balanceL col (l r : dtree) dl : dtree := match col with
| Red => Bnode Red l dl r
| Black => match l with

| Bnode Red (Bnode Red a da b) dab c =>
Bnode Red (Bnode Black a da b) dab (Bnode Black c (subD dl dab) r)

| ...
end end.

and prove the properties of balancing afterwards, e.g., the fact that balancing does not change the level-order traversal of nodes:

Lemma dflatten_balanceL c l r d : dflatten (balanceL c l r d) = dflatten l ++ dflatten r.

We also prove lemmas about two orthogonal sets of invariants: the shape invariants which guarantee that our trees are well-formed
red-black trees, and the data integrity invariants which state that the meta-data in our data representation correctly captures
properties of the represented data.

Using dependent types, we can encode the tree invariants inside their types, and implement balancing as a function returning
not only the result but also a proof that it preserves the level-order of nodes:

Definition balanceL {nl ml d cl cr nr mr} p (l : near_tree nl ml d cl) (r : tree nr mr d cr) :
color_ok p (fix_color l) -> color_ok p cr ->
{tr : near_tree (nl + nr) (ml + mr) (inc_black d p) p | dflatteni tr = dflatteni l ++ dflatten r}.

Here near_tree and tree encode two variants of the red-black invariants, together with the data integrity invariants, so that
this type really encodes the full specification of balancing.

To define this function, Coq offers two possibilities for complete definitions: tactics or the Program [9] command, both guiding
interactive development through the typing context.

2 Red-black Trees Formalized using Dependent Types

In this talk, we report on the implementation using dependent types of a library of functions for red-black trees. We have
implemented functions for balancing, insertion, and deletion (as well as other functions more specific to succinct data structures)
using the three approaches (direct-style, dependent types with tactics, dependent types with Program). We discuss in particular
the following points:
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• We compare the direct-style approach for formalizing red-black trees with approaches using dependent types. The direct-style ap-
proach is documented elsewhere [1]. The dependent type-style approach is documented in [1, file dynamic_dependent_tactic.v]
for the approach using Coq tactics and in [1, file dynamic_dependent_program.v] for the approach using the Program command.
Overall, developing using tactics is not as painful as one may think, as one has a lot of information from the types to almost
fully guide the development process. The version using Program, on the other hand, was more problematic: at first, we ran
into bugs and limitations of the system such that all our attempts at defining balanceL failed. Eventually, we found out
a way to write our algorithm using Program—namely pattern-match explicitly on every case analysis, one at a time, even
when only one branch is impossible, but this unfortunately leads to extremely verbose code.

• Our effort is a substantial application of the Program command. For illustration, this can be appreciated by the number of
obligations generated by Program (see the table on the right).
Note that in ddelete, none of the goals were automatically
solved because we disabled the automatic simplification of
goals (using Obligation Tactic := idtac), since the default
tactic used to simplify goals, program_simpl, made some goals

Program term generated oblig. remaining oblig.
Definition balanceL 30 7
Definition balanceR 28 9
Fixpoint dins 27 20
Fixpoint ddelete 161 161

invalid 2. However, using Solve All Obligations with program_simpl, we were eventually able to solve 102 of the 161
obligations automatically.
What did “type-driven” mean in our experiment? In practice, we started with direct-style and felt overwhelmed by the many

intermediate lemmas. We realized that dependent types could help rationalize our development without disrupting the process
of proving. For this purpose, Program looked appropriate but unfortunately turned out to be cumbersome. However, keeping
dependent types and reverting to proof using tactics cleared up the path so that we could eventually get back to complete
the proof using Program. The story is a bit different for deletion. At first, we couldn’t find the correct lemmas to prove our
adaptation of Kahrs’ algorithm. So we developed simultaneously a deletion algorithm and its invariants using tactics. We then
obtained a direct-style version by extracting the computational part of the proof, and proved it separately. We also developed
a Program version based on the direct-style version. Moreover, for the sake of comparison, one of the authors is also working
on developing the same algorithms using Coq Equations [10], Agda, and F* [11] 3.

3 Related Work

McBride gives a fully correct-by-construction, dependently-typed version of insertion and deletion algorithms for 2-3 trees [8], and
the same approach can be easily applied to red-black trees as well. However, while McBride’s algorithm is elegant and generalizable,
it requires a deep understanding of many dependently-typed programming techniques, and of the fact that insertion into and deletion
from balanced trees are instances of the indexed zipper construction. Although McBride’s approach can also be characterized
as “type-driven”, it serves a different purpose, namely using dependent types to program certain algorithms in a generic way.

Weirich also gives a dependently-typed version of insertion and deletion algorithms for red-black trees [12] in dependently-typed
Haskell [5]. Weirich’s version is similar to Chlipala’s well-known dependently-typed formalization of red-black trees in Coq [3]
(although Chlipala omits the deletion operation, which is significantly harder than insertion). The earliest known attempt in
developing insertion & deletion algorithms for red-black trees with type-level correctness guarantees is due to Kahrs, although
the invariants enforced in Kahrs’ work [7] are significantly weaker than in the other versions, due to the absence of many features
essential for dependently-typed programming in Haskell at the time.
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