
Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-Driven Development of Certified Tree
Algorithms

An Experience Report on Dependently-Typed Programming
in Coq

Reynald Affeldt 1 Jacques Garrigue 2,4

Xuanrui Qi 2,3 Kazunari Tanaka 2

1National Institute of Advanced Industrial Science and Technology, Japan

2Graduate School of Mathematics, Nagoya University, Japan

3Department of Computer Science, Tufts University, USA

4Inria Paris, France

September 8, 2019
The Coq Workshop 2019, Portland, Oregon

1 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our story

Dependently-typed Programming in Coq: Why and How?

The “Why” Why did we use dependent types in Coq? Under
what occasions are they useful?

The “How” What is the best approach towards
dependently-typed programming in Coq? How did we
approach it?

2 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our story

Dependently-typed Programming in Coq: Why and How?

The “Why” Why did we use dependent types in Coq? Under
what occasions are they useful?

The “How” What is the best approach towards
dependently-typed programming in Coq? How did we
approach it?

2 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our story

Dependently-typed Programming in Coq: Why and How?

The “Why” Why did we use dependent types in Coq? Under
what occasions are they useful?

The “How” What is the best approach towards
dependently-typed programming in Coq? How did we
approach it?

2 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Quick recap: what were we
working on?

Bit vectors with efficient insert & delete:

100

101 1111

10101 1111

delete 2nd bit

• Represented using a red-black tree
• Insertion and deletion might involve inserting/deleting

nodes
3 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The motivation

Deletion from red-black trees is too hard.

• long standing problem with a few proposed solutions
[Kahrs 2001; Germane & Might 2014], but none of them
totally satisfactory for us;

• complex invariant hard to describe precisely

• difficult to transcribe to our non-standard tree structure
(bit-borrowing, leaf merging, etc.)

4 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Take 1

We tried transcribing Kahrs’ Haskell code directly to Coq
without trying to fully understand it. But you guessed...

5 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Take 1

We tried transcribing Kahrs’ Haskell code directly to Coq
without trying to fully understand it. But you guessed...

5 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Using dependent types

Problem:

• not sure about how to do case analysis;

• not sure about the exact invariants;

• not sure about the auxiliary structures required.

Idea: use dependently-typed programming to guide
programming process.

6 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Auxiliary structures?

The intermediate data structures required for re-balancing the
tree:

Inductive near_tree : nat -> nat -> nat ->
color -> Type :=

| Bad : forall {s1 o1 s2 o2 s3 o3 d},
tree s1 o1 d Black ->
tree s2 o2 d Black ->
tree s3 o3 d Black ->
near_tree (s1 + s2 + s3) (o1 + o2 + o3) d Red

| Good: forall {s o d c} p,
tree s o d c ->
near_tree s o d p.

Re-balancing requires temporarily breaking the red-black tree
invariants, hence the need for auxiliary structures.

7 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Auxiliary structures?

The intermediate data structures required for re-balancing the
tree:

Inductive near_tree : nat -> nat -> nat ->
color -> Type :=

| Bad : forall {s1 o1 s2 o2 s3 o3 d},
tree s1 o1 d Black ->
tree s2 o2 d Black ->
tree s3 o3 d Black ->
near_tree (s1 + s2 + s3) (o1 + o2 + o3) d Red

| Good: forall {s o d c} p,
tree s o d c ->
near_tree s o d p.

Re-balancing requires temporarily breaking the red-black tree
invariants, hence the need for auxiliary structures.

7 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Take 2: Ltac

• use tactics to develop the program

• we ascribe strict types to each function, allowing to be
completely sure that our code is correct

• as a side effect, we got a very clean specification
• no “external” lemmas which can be easy to forget
• all desired invariants were encoded into the types

8 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Take 2: Ltac

• use tactics to develop the program

• we ascribe strict types to each function, allowing to be
completely sure that our code is correct

• as a side effect, we got a very clean specification
• no “external” lemmas which can be easy to forget
• all desired invariants were encoded into the types

8 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Programming Coq with tactics

The Pros

• “No brainer”: no need to fully understand the algorithm
[Chlipala 2013]

• Easy to refactor: when underlying data structures change

• Quick fixes & adapting to changes

9 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Programming Coq with tactics

The Cons

• You don’t know what you’re actually doing

• Readability: other people don’t know what you’re doing

• Semantics of Ltac changes frequently

10 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-driven development?

“Type-driven” in what sense?

Regular development: design the algorithm, and then write
types to check that you’re correct.

Type-driven development: write types to declare what you
want, and then code until it type checks

It type checks, ship it!

11 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-driven development?

“Type-driven” in what sense?

Regular development: design the algorithm, and then write
types to check that you’re correct.

Type-driven development: write types to declare what you
want, and then code until it type checks

It type checks, ship it!

11 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-driven development?

“Type-driven” in what sense?

Regular development: design the algorithm, and then write
types to check that you’re correct.

Type-driven development: write types to declare what you
want, and then code until it type checks

It type checks, ship it!

11 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-driven development?

“Type-driven” in what sense?

Regular development: design the algorithm, and then write
types to check that you’re correct.

Type-driven development: write types to declare what you
want, and then code until it type checks

It type checks, ship it!

11 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Applying the TDD methodology

At first, we had no clue about what the delete algorithm should
look like!

We began with a complete specification:

Definition ddelete
(d: nat)
(c: color) (num ones : nat)
(i : nat)
(B : tree w num ones (incr_black d c) c) :
{ B' : tree (num - (i < num))
(ones - (daccess B i)) d c |
dflatten B' = delete (dflatten B) i }.

12 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Applying the TDD methodology

At first, we had no clue about what the delete algorithm should
look like!

We began with a complete specification:

Definition ddelete
(d: nat)
(c: color) (num ones : nat)
(i : nat)
(B : tree w num ones (incr_black d c) c) :
{ B' : tree (num - (i < num))
(ones - (daccess B i)) d c |
dflatten B' = delete (dflatten B) i }.

12 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Applying the TDD methodology

Finding the missing auxiliary structure

We started to develop our function and found out that we
needed to keep track of whether the height of a node has been
decreased:

Inductive del_tree : nat -> nat -> nat -> color ->
Type :=

| Stay : forall {num ones d c} pc,
color_ok c (inv pc) -> tree w num ones d c ->
del_tree num ones d pc

| Down : forall {num ones d},
tree w num ones d Black ->
del_tree num ones d.+1 Black.

13 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Applying the TDD methodology

Refining the type

Now, we can write specifications for helper functions as well:

Definition balleft {lnum rnum lones rones d cl cr}
(c : color)
(l : del_tree lnum lones d cl)
(r : tree w rnum rones d cr)
(ok_l : color_ok c cl)
(ok_r : color_ok c cr) :

{ B' : del_tree (lnum + rnum) (lones + rones)
(incr_black d c) c |
dflattend B' = dflattend l ++ dflatten r }.

Iterative development process similar to using holes and
case-split iteratively in Agda or Idris.

14 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Extraction

Two types of extraction:

• Extracting ML code from code defined using tactics

• “Extracting” a non-dependently-typed core of the
algorithm within Coq (see ITP talk tomorrow)

15 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Extraction

Two types of extraction:

• Extracting ML code from code defined using tactics

• “Extracting” a non-dependently-typed core of the
algorithm within Coq (see ITP talk tomorrow)

15 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Extraction

Two types of extraction:

• Extracting ML code from code defined using tactics

• “Extracting” a non-dependently-typed core of the
algorithm within Coq (see ITP talk tomorrow)

15 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Take 3: rewrite using Program

Program is a framework for dependently-typed programming in
Coq [Sozeau 2006; 2008].

• Cleaner code: automatically generate type coercions for
terms

16 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Good

• Readability and writability

• Obligation mechanism improves “modularity”

• Non-structural recursion using measure

18 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Good

• Readability and writability

• Obligation mechanism improves “modularity”

• Non-structural recursion using measure

18 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Good

• Readability and writability

• Obligation mechanism improves “modularity”

• Non-structural recursion using measure

18 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Experiences with Program

The Good

• Readability and writability

• Obligation mechanism improves “modularity”

• Non-structural recursion using measure

18 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)

20 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)

20 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)

20 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)

20 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)

20 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic

21 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic

21 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic

21 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic

21 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic

21 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Final remarks

Come to our ITP talk tomorrow at 16:30!

R. Affeldt, J. Garrigue, X. Qi, K. Tanaka. “Proving Tree
Algorithms for Succinct Data Structures”.

https://github.com/affeldt-aist/succinct

22 / 22

https://github.com/affeldt-aist/succinct

	Introduction
	Initial take
	Why dependent types?
	Producing better code
	Conclusion

