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Our story

Dependently-typed Programming in Coq: Why and How?

The “Why” Why did we use dependent types in Coq? Under
what occasions are they useful?

The “How” What is the best approach towards
dependently-typed programming in Coq? How did we
approach it?
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Quick recap: what were we
working on?

Bit vectors with efficient insert & delete:

100

101 1111

10101 1111

delete 2nd bit

• Represented using a red-black tree
• Insertion and deletion might involve inserting/deleting

nodes
3 / 22
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The motivation

Deletion from red-black trees is too hard.

• long standing problem with a few proposed solutions
[Kahrs 2001; Germane & Might 2014], but none of them
totally satisfactory for us;

• complex invariant hard to describe precisely

• difficult to transcribe to our non-standard tree structure
(bit-borrowing, leaf merging, etc.)
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Take 1

We tried transcribing Kahrs’ Haskell code directly to Coq
without trying to fully understand it. But you guessed...
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Using dependent types

Problem:

• not sure about how to do case analysis;

• not sure about the exact invariants;

• not sure about the auxiliary structures required.

Idea: use dependently-typed programming to guide
programming process.
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Auxiliary structures?

The intermediate data structures required for re-balancing the
tree:

Inductive near_tree : nat -> nat -> nat ->
color -> Type :=

| Bad : forall {s1 o1 s2 o2 s3 o3 d},
tree s1 o1 d Black ->
tree s2 o2 d Black ->
tree s3 o3 d Black ->
near_tree (s1 + s2 + s3) (o1 + o2 + o3) d Red

| Good: forall {s o d c} p,
tree s o d c ->
near_tree s o d p.

Re-balancing requires temporarily breaking the red-black tree
invariants, hence the need for auxiliary structures.
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Take 2: Ltac

• use tactics to develop the program

• we ascribe strict types to each function, allowing to be
completely sure that our code is correct

• as a side effect, we got a very clean specification
• no “external” lemmas which can be easy to forget
• all desired invariants were encoded into the types
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Programming Coq with tactics

The Pros

• “No brainer”: no need to fully understand the algorithm
[Chlipala 2013]

• Easy to refactor: when underlying data structures change

• Quick fixes & adapting to changes
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Programming Coq with tactics

The Cons

• You don’t know what you’re actually doing

• Readability: other people don’t know what you’re doing

• Semantics of Ltac changes frequently

10 / 22



Type-Driven
Development
of Certified

Tree
Algorithms

Introduction

Initial take

Why
dependent
types?

Producing
better code

Conclusion

Type-driven development?

“Type-driven” in what sense?

Regular development: design the algorithm, and then write
types to check that you’re correct.

Type-driven development: write types to declare what you
want, and then code until it type checks

It type checks, ship it!
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Applying the TDD methodology

At first, we had no clue about what the delete algorithm should
look like!

We began with a complete specification:

Definition ddelete
(d: nat)
(c: color) (num ones : nat)
(i : nat)
(B : tree w num ones (incr_black d c) c) :
{ B' : tree (num - (i < num))
(ones - (daccess B i)) d c |
dflatten B' = delete (dflatten B) i }.

12 / 22
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Applying the TDD methodology

Finding the missing auxiliary structure

We started to develop our function and found out that we
needed to keep track of whether the height of a node has been
decreased:

Inductive del_tree : nat -> nat -> nat -> color ->
Type :=

| Stay : forall {num ones d c} pc,
color_ok c (inv pc) -> tree w num ones d c ->
del_tree num ones d pc

| Down : forall {num ones d},
tree w num ones d Black ->
del_tree num ones d.+1 Black.
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Applying the TDD methodology

Refining the type

Now, we can write specifications for helper functions as well:

Definition balleft {lnum rnum lones rones d cl cr}
(c : color)
(l : del_tree lnum lones d cl)
(r : tree w rnum rones d cr)
(ok_l : color_ok c cl)
(ok_r : color_ok c cr) :

{ B' : del_tree (lnum + rnum) (lones + rones)
(incr_black d c) c |
dflattend B' = dflattend l ++ dflatten r }.

Iterative development process similar to using holes and
case-split iteratively in Agda or Idris.
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Extraction

Two types of extraction:

• Extracting ML code from code defined using tactics

• “Extracting” a non-dependently-typed core of the
algorithm within Coq (see ITP talk tomorrow)
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Take 3: rewrite using Program

Program is a framework for dependently-typed programming in
Coq [Sozeau 2006; 2008].

• Cleaner code: automatically generate type coercions for
terms
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Experiences with Program

The Bad

• Many problems with unification engine: existential
variables caused a lot of problems

• program_simpl was too aggressive sometimes, destroying
goals in the process

• Solution: disable program_simpl, unless the goal was
directly solved by it.

• Bad error messages and mysterious failures
• Error: the kernel does not support existential

variables
• Workaround: explicitly match on each argument that

needs to be matched

• Performance issues with Program

• Simplifying and rewriting

17 / 22
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Experiences with Program

The Good

• Readability and writability

• Obligation mechanism improves “modularity”

• Non-structural recursion using measure
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The other alternative: Equations

Dependent pattern-matching compiler for Coq [Sozeau 2010;
Sozeau & Mangin 2019].

• Even more readable code (Agda-like)

• funelim tactic supports easy pattern-matching in proofs

• No more Axiom K [Sozeau & Mangin 2019]

Equations was the perfect alternative for us, but currently some
bugs prevent us from using it with MathComp.

e.g. issues #195, #212, #216, #217, #81 (closed), #179
(closed)

19 / 22
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Our takeaways

• Dependent types in Coq are often useful. Use them as you
see fit!

• Type-driven development is a great way to write programs
that you don’t know how to write!

• Tactics can be used to write programs, quite reliably

• Coq community needs to look at dependent types more
(fix bugs, develop tools, etc.)
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Future directions

• Editor support (esp. for Equations)

• Erasure of type indices à la [Brady, McBride & McKinna
2003]

• Showing only computationally-relevant terms

• Bug fixes and a better program_simpl tactic
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Final remarks

Come to our ITP talk tomorrow at 16:30!

R. Affeldt, J. Garrigue, X. Qi, K. Tanaka. “Proving Tree
Algorithms for Succinct Data Structures”.

https://github.com/affeldt-aist/succinct
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