
Elephant Tracks II: Practical,
Extensible Memory Tracing

by

Xuanrui (Ray) Qi

B.S.C.S., Tufts University, 2018

A senior honors thesis

submitted to

the Department of Computer Science
School of Engineering

Tufts University
Medford, Massachusetts

May 3, 2018

Thesis Committee:
Professor Samuel Z. Guyer, Chair

Professor Kathleen Fisher

ELEPHANT TRACKS II: PRACTICAL, EXTENSIBLE MEMORY TRAC-
ING

Copyright by Xuanrui (Ray) Qi, 2018

This thesis is licensed under the Creative Commons Attribution 4.0 Interna-
tional (CC BY 4.0) License.
For a copy of the license, please visit: https://creativecommons.org/

licenses/by/4.0/legalcode.

This thesis is typeset using LATEX.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Abstract

This thesis presents a new tool for memory tracing, Elephant Tracks II.
Elephant Tracks II (or ET2) is a portable, modular and extensible mem-
ory tracing tool designed for practical memory tracing of garbage-collected
programs, producing precise traces of the program’s heap operations, includ-
ing allocation, pointer mutation, procedure entry & exit, and object deaths,
using the Merlin algorithm (Hertz et al., 2006) to compute death times.
Unlike all previous tools, however, ET2 is capable to support multiple pro-
gramming languages by decoupling the tracing phase and the death time
computation phase. We describe the high-level design and low-level imple-
mentation strategies employed to support this extensibility and portability.
In this thesis, we also present new algorithms and implementation techniques
developed as part of the Elephant Tracks II project, as well as an overview
of the applications of memory tracing.

Acknowledgements

First of all, I must thank my advisor, research supervisor, and thesis commit-
tee chair, Professor Samuel Guyer, for his unwavering support. On a winter
day, I walked into his office and asked if he had research projects; Sam was
kind enough to offer me many potential projects. After a few steers, now
here we are. Although we faced many difficulties during the course of the
three semesters of research we did together, Sam has always been supportive
as always.

I must also thank all my external collaborators, as Elephant Tracks II
is the result of a collaborative effort and definitely not just “my” project.
Especially, I would like to acknowledge the DaCapo Tooling Team at Google,
including (in alphabetical order) JC Beyler, Man Cao, Wessam Hassanein,
Kathryn McKinley, Ryan Rose, and Leandro Watanabe, as well as Steve
Blackburn at the Australian National University, for their useful insights
and hard work.

I shall also thank Professor Kathleen Fisher, who, as the second reader on
my thesis committee, the CS department chair, my programming languages
(COMP 105) professor, and a mentor of mine, was always helpful and caring.
I need also to thank (now) Dr. Michael Shah, now a lecturer at Northeastern
University, who was once a marvelous teaching assistant who introduced me
to computer science research; without him, I might not have been here at
all. Raoul Veroy, who is now the de facto maintainer of the original Elephant
Tracks, also provided me with a lot of assistance. Two fellow undergraduates,
Jeremy Colebrook-Soucie and Matt Jones worked with me on a different but
closely related project, “JumboViz” (as I call it), and their work on that
project also proved to be helpful for the ET2 research I am doing.

There were a few other people who helped me on this project. I owe
a lot to Luis Mastrangelo, who, as the author and maintainer of the JNIF
library, provided us generous help and even helped us debug our code. Ben
Gamari and Kavon Farvadin answered questions on the part about functional
programming. Without them, it would have been really difficult for me to
carry out my research and write my thesis.

Of course, there are many others important mentors and teachers whom
I must thank. Without Professor Mark Sheldon’s instruction and mentor-
ship, I wouldn’t have gone this far in computer science, and especially not in
programming languages. Other faculty in the computer science department,
such as Professor Norman Ramsey, Professor Noah Mendelsohn, Professor

3

Ming Chow, and the much beloved Professor Ben Hescott, have also sup-
ported me as an undergraduate at Tufts.

Many, many more people — including, of course, my family and my
friends — supported me during the course of this project and during my
entire undergraduate career, but due to space limitations I could not possibly
list all of them here, so I’d like to apologize sincerely to all of those whom I
have neglected to thank above.

4

Contents

1 Introduction 1

2 Preliminaries and Previous Work 8

3 Architecture 13

4 Algorithms and Implementation 23

5 Extensibility 33

6 Related and Future Work 36

7 Conclusion 43

Appendix: Overview of Code Repositories 45

Bibliography 48

Chapter 1

Introduction

A LISP programmer knows the value of everything, but the cost
of nothing.

—Alan J. Perlis, “Epigrams on Programming” (1982)

1.1 The cost of cost

Most if not all reasonably experienced programmers would probably have
programmed in a programming language with manual memory management,
especially C and C++. Few of those programmers would like to be reminded
about the horrors of debugging and facing memory bugs — especially those
caused by dangling pointers and memory leaks. Often times, C programmers
fail to know the “true value” of things, in the sense that the values stored
in variables might be interpreted in unexpected ways — this causes many
memory bugs like dangling pointers and out-of-bounds access. One must
allocate the correct amount of memory and deallocate that memory at the
right time — if the programmer ever makes a mistake, the value goes away.

In Perlis’ time, programming in manually managed languages such as C,
Fortran and Pascal was still the norm. However, had Perlis lived through the
1990s, he would have rephrased his epigram as “most programmers know the
cost of nothing”. For a Lisp — and Java, Ruby or Haskell — programmer,
knowing the value of things are much easier. The days where an off-by-
one error may result in the program hitting garbage memory and giving out
unexpected results were long gone, and, except in the few cases where C

1

programming is still necessary, the majority of programmers are using auto-
matically (or at least semi-automatically, as in the case of C++) managed
languages.

Knowing the value of things is now much easier: structured, high-level
programming languages have greatly decreased the chances that inadvertent
programmer errors result in fatal program errors. However, there is a trade-
off in any engineering problem, and the case of programming language choice
is no exception. With these programming languages, the cost of things be-
come largely unpredictable.

A Java or Haskell programmer might use heap-allocated, linked data
structures, but they would never explicit allocate or deallocate any mem-
ory. When the programmer creates a new class instance or a new algebraic
data type instance, the runtime system manages the allocation for the pro-
grammer. When the object becomes unreachable, the garbage collector finds
it and calls free for the programmer. High level imperative programming
languages like Java and functional programming languages Haskell thus al-
low programmers to concentrate on value of the things, but as a “side effect”,
these programmers cease to understand the cost of things, which is abstracted
away from them.

1.2 Why cost matters

Memory cost becomes intractable for those programmers. When program-
mers no longer understand the memory cost of program operations, memory
bugs and other issues might occur. For example, when a Java programmer
creates a static class member holding large chunks of memory, or when they
create streams and handles without closing them, memory leaks may occur.
Here are two examples of two Java programs that create memory leaks:

Code snippet 1.1: Java memory leak examples�
// memory leak by static reference
static List<Object> p = new ArrayList<>(33554432) ;

// memory leak by held resource
public void foo() {

try {
Connection conn = getConnection() ;
// do something with the connection

2

conn. close () ;
} catch (Exception e) {

// if an exception is thrown, close () is never called
System. err . println(”Error : ” + e) ;

}
}� �

In C or C++, memory leaks are, despite being much more numerous, rel-
atively easier to deal with as they are easier to spot and could be found using
tools like valgrind. In most cases, a programmer only needs to find a malloc

call that is not paired with a free call. However, in Java, memory leaks are
infrequent, but they are hidden and might have serious consequences if not
discovered. A Java programmer might know when and where their object is
allocated, but they almost never know when their object dies. Moreover, the
garbage collection overhead adds an indeterminable cost to program execu-
tion; although there are effective methods to decrease this cost with some
programmer input (Bruno et al., 2017; Nunez et al., 2016), the “why” is often
not adequately understood.

For a Scala or Haskell programmer, the situation might be even worse as
the basic program operations do not directly map into memory allocations
and deallocations. In this case, it is extremely hard for programmers to un-
derstand, and sometimes impossible, for programmers to analyze the cost of
their program operations. Although functional programming languages are
not designed to be memory efficient, sometimes the cost of programs is simply
too large to be ignored. For example, due to lazy evaluation and the use of
function closures, a simple red-black tree benchmark in Haskell allocates more
than 3 gigabytes of memory on the heap (see the appendix:a]Appendix for
the program). In comparison, both the Standard ML and OCaml versions of
this benchmark, compiled using their respective optimizing native-code com-
pilers (MLton and ocamlopt), allocate only about 1.6 gigabytes of memory,
ostensibly due to both SML and OCaml using eager evaluation. Most of the
extra memory Haskell allocates is deallocated immediately, but at this scale,
the space cost of functional programs does deserve more comprehension.

The goal of this thesis, therefore, is to help Java — and Lisp, Scala,
Haskell, etc. — programmers overcome Perlis’ epigram by providing them
with tools that can help them understand the cost of their programs precisely.
More specifically, this thesis looks into the dynamic analysis of the space cost
of programs; that is, to help programmers understand the life and death of

3

their heap objects at runtime.

1.3 Why memory tracing?

To better understand memory usage patterns in programs and identify po-
tential memory bottlenecks, we use dynamic analysis to generate memory
traces, or records of lives and deaths of objects dynamically allocated on
the heap. With those records, one fully understands the memory usage pat-
terns of automatically memory managed programs. Memory and garbage
collection tracing is of paramount importance to the analysis of memory per-
formance in garbage-collected languages. Experimental studies of memory
behavior and garbage collector performance (Sewe et al., 2012; Veroy and
Guyer, 2017) rely on precise analysis made possible by GC tracers. More-
over, memory tracing can be useful for debugging memory bugs and potential
leaks (Jensen et al., 2015). Finally, memory tracing can be used to analyze
the finer parts of GC performance issues, such as average latency, i.e., time
lapsed between the death of an object and its eventual deallocation.

1.4 Challenges with preexisting tools

Despite the importance of memory tracing in the analysis of garbage col-
lection and memory usage in managed languages, there have been few tools
available to perform this task. One preexisting tool, GCTrace, is available
as a component of the Jikes RVM (Alpern et al., 2005). However, the Jikes
RVM has been of research interest only, and has been mostly superseded
by HotSpot JVM even in that field. Moreover, GCTrace is built into the
Jikes RVM and updates to the JVM itself has rendered it unusable in newer
versions of Jikes RVM. Thus, GCTrace has mostly fell into disuse. Another
tool, Elephant Tracks (Ricci et al., 2013), comes from our previous work, and
was designed with the goal to be portable between different JVMs in mind;
in practice, Elephant Tracks has proved to be a relatively trustworthy tool.

However, Elephant Tracks has three important flaws. First, Elephant
Tracks is not well documented and standardized, so its trace output format
and code base could bit-rot quickly, and as a result often fails its design
goal of portability — in fact, bit rot has rendered it effectively bound to
one specific Java implementation, the IBM J9. Second, Elephant Tracks

4

can only provide GC trace analysis for JVM languages as the death record
generalization process is built in to the running Java program as a JVM agent.
Finally, Elephant Tracks, although precise, is extremely slow: in usual cases,
Elephant Tracks slows down program execution by 500-1000 times, making
full analysis of larger programs impossible. Although Elephant Tracks has
been a good tool for controlled experiments on the Java GC, its usage is
severely limited by performance and portability issues.

1.5 Presenting a new tool

Although efforts were made to refine Elephant Tracks, it proved difficult
to substantially improve the tool. Specifically, Elephant Tracks has many
outdated dependencies with legacy APIs, and updating the dependencies re-
quires substantial engineering effort. Moreover, Elephant Tracks suffers from
a significant architectural flaw: Merlin, the algorithm used to produce death
timestamps, is run during the trace collection phase. Naturally, this slows
down program execution and limits attempts to enhance the extensibility of
Elephant Tracks. Moreover, this results in many inefficiencies in the imple-
mentation: for example, the entire program heap has to be “shadowed” inside
Elephant Tracks! As a result, the only choice left is to re-design Elephant
Tracks from scratch (while reusing some components of the old Elephant
Tracks), hence our tool is named Elephant Tracks II. While running the
same algorithms and using the same trace-gathering mechanics as Elephant
Tracks, Elephant Tracks II is architecturally very different from the original
Elephant Tracks.

In this thesis, we will present Elephant Tracks II (ET2), a practical, ex-
tensible GC tracing tool and memory analysis framework that inherits many
of the goals of Elephant Tracks, but which is also substantially different from
Elephant Tracks in many ways; ET2 could thus be considered a successor to
Elephant Tracks.

1.6 Goals of the Elephant Tracks II project

The goals of the Elephant Tracks II project directly address the shortcomings
of Elephant Tracks. The main design and implementation goals of Elephant
Tracks II are as following:

5

1. standardization: provide a standard interface to and output format
for GC traces;

2. efficiency: be as fast as possible, with the goal being a 50-100 ×
slowdown (as compared to Elephant Tracks’ 500-1000 × slowdown,
this is really fast!);

3. modularity: be as modular as possible. Especially, we would like to
decouple the Merlin algorithm from the JVM agent, moving it into the
“postmortem” analysis phase, which does not affect program execution;

4. inter-language operability: a result of the improved modularity, the
new Elephant Tracks II trace analyzer can now analyze GC traces from
any language — in principle. On the implementation side, this requires
implementing some extra tools for each programming language, but the
analysis framework can be easily shared between languages.

1.7 Collaboration

Elephant Tracks II is a large project and is certainly not the work of one
person. I did most of the design and the implementation of the Java bytecode
rewriter, but many the tracing algorithms were devised in collaboration with
Samuel Guyer, while the backend was written by Leandro Watanabe during
his internship at Google based on code previously written by Samuel Guyer
and Nathan Ricci. A team of researchers from Google and the Australian
National University collaborated on the Elephant Tracks II project in general,
although much of the work is not in the scope of this thesis.

1.8 Outline of the thesis

The thesis will be divided into six chapters, excluding this introductory chap-
ter. Chapter 2 will introduce the premliminaries and past work, including the
Merlin algorithm (Hertz et al., 2006), memory tracing techniques, and issues
with earlier GC tracer designs, especially issues concerning the design of the
original Elephant Tracks. Chapter 3 will outline the architecture, trace for-
mat and major design concerns in the design of Elephant Tracks 2. Chapter
4 will discuss the implementation of Elephant Tracks II, including the major

6

programming techniques and strategies used to deal with difficult situations.
Chapter 5 will discuss the extensibility of Elephant Tracks II, especially to
functional programming languages. Chapter 6 will provide a comparison to
other work and outline future work. Chapter 7 will conclude the thesis.

7

Chapter 2

Preliminaries and Previous
Work

2.1 The fundamental problem of garbage col-

lection analysis

Memory management is difficult, and the horrors of manual memory man-
agement need not be reiterated. Reference counting is a simple alternative
to manual memory management, but suffers from two major drawbacks: (1)
it incurs significant runtime cost, as the reference count needs to be updated
whenever a new alias is created or destroyed for each pointer, and (2) it
results in memory leaks whenever cycles are formed in the reference graph.
Tracing garbage collection algorithms fix both problems, and are easy to
parallelize and optimize (Jones et al., 2011).

Although tracing garbage collection is a much more efficient algorithm
than reference counting for most purposes, it has a few serious drawbacks.
Garbage collection algorithms, no matter how refined, cause random pauses
during program execution which are unpredictable and nondeterministic.
Moreover, garbage collctors cannot tell us when objects die; all we could
know is that garbage-collected objects die some time between the last garbage
collection run and the current garbage collection run.

Thus, the properties of garbage collectors impede the analysis and evalu-
ation of themselves, and external tools are often required to analyze garbage
collectors. For example, a good garbage collector should minimize the time
span ∆t between an object’s death time td and collection time tc. A reason-

8

able metric that a garbage collector designer (and implementer) would like
to minimize might be the average “drag”, i.e.

∆t =
1

nobj

nobj∑
i=1

(tic − tid) (2.1)

However, without extra analysis tools, one could not obtain even a rea-
sonable guess for the td value of any object, and therefore could not compute
∆t using 2.1. Obtaining death times for each object is (in principle) easy: for
example, one could simply do “mock” reference count on each object (with-
out actually deallocating dead objects) and recording the object death times.
Nevertheless, this method, albeit intuitive, suffers from the same drawbacks
that plague the effectiveness of reference counting: this will degrade runtime
performance (such that the validity of timestamps obtained become ques-
tionable), and this method could not generate death records for objects that
form part of a cycle in the reference graph.

For these reasons, neither Elephant Tracks II nor other GC tracing tools
(Jensen et al., 2015; Ricci et al., 2013) use reference counting to generate
death record. Instead, we use the Merlin algorithm (Hertz et al., 2006),
which will be discussed hereafter, to compute precise object death records
using information gathered at runtime.

2.2 The Merlin algorithm

Instead of (painstakingly) building a reference counter into a runtime system
and generate incomplete death records with it, one can compute the idealized
death time of objects using the Merlin algorithm, which is based on a simple
insight. There are two ways that object “die”, i.e. become disconnected
from the reference graph: when there are no more references to the object,
or when all objects that hold references to the said object have died (Hertz
et al., 2006, 2002; Ricci et al., 2013). Thus, we could compute the death time
of each object recursively:

9

Code snippet 2.1: Haskell-style pseudocode for the Merlin algorithm�
deathTime : : Object → Timestamp
deathTime o = max (timeStamp o)

(maximum pointsToDeathTimes)
where

pointsToDeathTime = map deathTime (allPointsTo o)� �
where allPointsTo o generates a list of objects that point to o, and
timeStamp o fetches the “timestamp” for o. For the purposes of the Merlin
algorithm, the timestamp for an object is the last time at which the object
is found to be accessible or “alive”.

The näıve recursive version of the Merlin algorithm is illustrative for
purposes of understanding the algorithm, but is inefficient for actual imple-
mentation, and in fact, will not terminate when the reference graph contains
cycles. However, Hertz et al. (2006) also gives an efficient, stack-based, im-
plementation, based on depth-first search through the reference graph, that
runs in Θ(n log n) time and has good experimental results.

Another way of thinking about the Merlin algorithm is that the idealized
death time for each object, in a cyclic graph, is that the idealized death time
of each object is the least fixed-point that satisfies the equation

Td(o) = max(Ts(o), {Td(p) | ∀p : p→ o})

where Ts is the current timestamp function and Td is the deathtime function.
The DFS-based implementation is simply an instance of the iterative method
for the least fixed-point under this definition.

Additionally, although the Merlin algorithm is designed to run on each
garbage collection, it could also be run offline if garbage collections are
recorded in the GC trace. In Elephant Tracks, the online approach is used;
however, in Elephant Tracks II, the offline approach will be used.

With the Merlin algorithm, the problem of generating death records is
transformed into one of finding timestamps for each object, but the Merlin
algorithm itself leaves this as an open question. For Java-like languages, the
best marker of an object being alive is probably the object being “used”,
e.g. an instance method called on the object, the object being assigned to
a pointer, etc. However, the strategy used is up to the implementer, and
the effectiveness of Merlin is up to effective timestamp generation for each
object.

10

2.3 Elephant Tracks

Elephant Tracks (Ricci et al., 2013) is the major motivation for the work
in this thesis, and represents a major attempt to use the Merlin algorithm
for practical GC tracing. Elephant Tracks is implemented as a JVM Tool
Interface (JVMTI) agent, or a shared library containing callbacks for the
JVM to call on a number of events, e.g. whenever a class is loaded.

To generate timestamps for each object, Elephant Tracks rewrites the
bytecode of each class before it is loaded, and inserts calls to methods that
record significant events. For example, whenever Elephant Tracks find an
object allocation in a method, it inserts a call to a method that records the
allocation event. Whenever Elephant Tracks finds a getfield instruction in
a method, it inserts a call to update the timestamp for the object subject
to the instruction, as a getfield on an object indicates the aliveness of the
object.

When a class is about to be loaded, the JVM calls the callback function
supplied to it, while the function sends the bytecode to a bytecode manip-
ulator process. The “bytecode manipulator” rewrites the class using the
ASM bytecode instrumentation library, and sends the instrumented byte-
code back after it is done with instrumentation. Then, at runtime, the new,
instrumented bytecode will be executed, and records will be generated by
the inserted “interceptor” methods. As all production-level JVMs provide
implementations of the JVMTI, Elephant Tracks is, in principle, compatible
with all standards-conformant JVM implementations.

While Elephant Tracks is mostly successful in generating precise and com-
plete GC traces for Java programs, one may easily see that the implemen-
tation of Elephant Tracks is extremely inefficient. First of all, inter-process
communication between the agent and the “bytecode manipulator” is re-
quired on every single class load, which adds extremely high overhead to the
running Java program. Moreover, the “interceptor” methods are all native
methods, requiring the JVM to invoke the JNI on any “interesting” event.
Finally, this complex architecture has rendered the code base for Elephant
Tracks no longer maintainable and extremely prone to bit-rot. In fact, by
February 2018, Elephant Tracks can only run on a very old version of IBM
J9 JVM, using outdated versions of the ASM library, and can slow down
program execution by 800 to 1000 times. Initially, Elephant Tracks was pro-
posed as a fast and portable alternative to its alternatives such as GCTrace,
but due to architectural and design flaws, Elephant Tracks no longer meets

11

its initial design goals.
Our new tool, Elephant Tracks II, is a tool “in the spirit of” Elephant

Tracks, but is free of many design flaws of Elephant Tracks, making it easily
extensible and maintainable.

12

Chapter 3

Architecture

3.1 The architecture of Elephant Tracks

Ricci et al. (2013) listed six design goals of Elephant Tracks: precise, com-
plete, informative, well-defined, portable, and fast. However, the latest re-
lease of Elephant Tracks (RedLine Research Group, 2014) barely achieves
three of those goals, namely well-defined, portable and fast.

According to RedLine Research Group (2014), the current release of Ele-
phant Tracks fails to run on most Java implementations (supporting only
IBM J9), does not support recent Java implementations, and can be ir-
ritatingly slow. Most of the problems bugging Elephant Tracks could be
attributed to its architecture.

The old Elephant Tracks — like the new Java frontend to Elephant Tracks
— is written as a JVM Tool Interface agent (Ricci et al., 2013). The JVMTI,
according to Oracle’s specifications, is a interface which should be imple-
mented by all standards-conforming JVMs that allow developers and de-
buggers to dynamically inspect and control the state and execution of Java
programs (Oracle Corporation, 2013) running in a JVM, in a fashion similar
to the GNU Debugger (gdb)’s state inspection and execution control facilities.
For example, jdb, the gdb-style debugger included in both of Oracle’s Java
implementations (Oracle JDK and OpenJDK), is implemented as a JVMTI
agent.

The JVMTI does not specify how the JVM shall interact with JVMTI
agents besides stating that they should “run in the same process with and
communicate directly with the virtual machine executing the application be-

13

ing examined”. However, since JVMTI agents are compiled to native shared
objects on the host system, most if not all JVM implementations dynami-
cally link with the JVMTI agent at runtime and call into the JVMTI agent
at specific events. For example, a (rather primitive) profiler might want to
set a callback on the entry and exit of each method to generate a call graph.
At run time, every time a method is entered or exited, the JVM calls into
the provided callback function and executes it. The JVMTI, therefore, is an
ideal technique to implement a memory tracer. Thus, when we designed the
Java frontend for ET2, we chose to continue to use the JVMTI as a portable
and efficient technique to gather traces.

Elephant Tracks uses dynamic bytecode rewriting as its major implemen-
tation technique. A JVMTI callback is set such that Elephant Tracks gets
access to a class’s metadata and bytecode right before a class is loaded. Then,
Elephant Tracks inspects the bytecode of each method in the class, searching
for important events such as object allocation (i.e. a new instruction) or a
pointer update (usually a putfield instruction). When an important event
is found, the bytecode rewriter inserts a call to a static method in a “proxy”
class. After Elephant Tracks rewrite the class, it is loaded and executed.
During execution, the “proxy” method generates appropriate traces for the
event it witnesses.

For example, let us consider the following Java method, taken from a real
benchmark used to profile ET2:

Code snippet 3.1: Elephant Tracks example: source code�
public class BinarySearchTree<T extends Comparable<T>> {

// other methods omitted

public void insert (T insertVal) {
if (val == null) {

val = insertVal ;
return ;

}

if (val .compareTo(insertVal) ≤ 0) {
if (right == null) {

right = new BinarySearchTree<T>(insertVal) ;
} else {

right . insert (insertVal) ;
}

14

} else if (l e f t == null) {
l e f t = new BinarySearchTree<T>(insertVal) ;

} else {
l e f t . insert (insertVal) ;

}
}

}� �
An analysis at the source code level would allow us to spot the allocation

sites and pointer updates and “liveness witnesses” (i.e. instructions that
proves the liveness of an object) in the code:

Code snippet 3.2: Elephant Tracks example: annotated source code�
public class BinarySearchTree<T extends Comparable<T>> {

// other methods omitted

public void insert (T insertVal) {
// witness the liveness of the callee of ‘ ‘ insert ’ ’

if (val == null) {
// pointer update : val → insertVal
val = insertVal ;
return ;

}

if (val .compareTo(insertVal) ≤ 0) {
if (right == null) {

// allocation and pointer update
right = new BinarySearchTree<T>(insertVal) ;

} else {
right . insert (insertVal) ;

}
} else if (l e f t == null) {

// allocation and pointer update
le f t = new BinarySearchTree<T>(insertVal) ;

} else {
l e f t . insert (insertVal) ;

}
}

15

}� �
Next, the bytecode of the compile method shall be examined. The

BinarySearchTree class is compiled using javac version 1.8.0 161 and then
disassembled using javap. Comments which mark the places where Elephant
Tracks would inject method calls have been inserted.

Code snippet 3.3: Elephant Tracks example: annotated bytecode�
public void insert (T) ;

Code:
0: aload_0

1: getfield #2 // Field val :Ljava/lang/Comparable;
4: ifnonnull 13
7: aload_0

8: aload_1

// pointer update
9: putfield #2 // Field val :Ljava/lang/Comparable;

// method exit
12: return

13: aload_0

14: getfield #2 // Field val :Ljava/lang/Comparable;
17: aload_1

// liveness witness (‘ ‘ val ’ ’) & method cal l
18: invokeinterface #6, 2 // InterfaceMethod java/lang/

Comparable.compareTo:(Ljava/lang/Object ;) I
23: ifgt 59
26: aload_0

27: getfield #4 // Field right :LBinarySearchTree ;
30: ifnonnull 48
33: aload_0

// allocation
34: new #7 // class BinarySearchTree
37: dup

38: aload_1

// method cal l
39: invokespecial #8 // Method ”<init>”:(Ljava/lang/Comparable

;)V
42: putfield #4 // Field right :LBinarySearchTree ;
45: goto 89
48: aload_0

16

49: getfield #4 // Field right :LBinarySearchTree ;
52: aload_1

// liveness witness (‘ ‘ right ’ ’) & method cal l
53: invokevirtual #9 // Method insert : (Ljava/lang/Comparable;)

V
56: goto 89
59: aload_0

60: getfield #3 // Field le f t :LBinarySearchTree ;
63: ifnonnull 81
66: aload_0

// allocation
67: new #7 // class BinarySearchTree
70: dup

71: aload_1

// method cal l
72: invokespecial #8 // Method ”<init>”:(Ljava/lang/Comparable

;)V
// pointer update
75: putfield #3 // Field le f t :LBinarySearchTree ;
78: goto 89
81: aload_0

82: getfield #3 // Field le f t :LBinarySearchTree ;
85: aload_1

// liveness witness (” le f t ”) & method cal l
86: invokevirtual #9 // Method insert : (Ljava/lang/Comparable;)

V
// method exit
89: return� �

As one might see, there are two deciding factors that constrain Elephant
Tracks’ efficiency: the efficiency of bytecode rewriting, and the number (and
efficiency) of inserted method calls. However, these two aspects are exactly
the places where Elephant Tracks perform badly.

In the Elephant Tracks workflow, a JVMTI callback fetches the bytecode
of a newly loaded class, and then launches a rewriting procedure (using the
ASM library) in a new JVM process. The communication between the Ele-
phant Tracks host JVM and the newly lanched Java process is facilitated us-
ing standard UNIX interprocess communication utilities. Then, the rewriter
inserts a number of instrumentation method calls to the program. However,
the instrumentation calls are JNI invocations, and this results in the ab-

17

straction barrier between the JVM and the underlying system being broken
frequently, resulting in many important JVM facilities (such as just-in-time
compilation) becoming unusable. The overheads of interprocess communica-
tion and JNI invocations, when combined, results in poor performance for
Elephant Tracks.

For details on the design of Elephant Tracks, however, we shall direct
readers to Ricci et al. (2013). The main point here is that the design of
Elephant Tracks is driven by implementation and unmodular, and thus it
contains a few important flaws which need to be rectified. Thus, to optimize
the workflow of Elephant Tracks, we propose a new design that decouples
separate tasks involved in memory tracing.

3.2 Overview of ET2 architecture

Elephant Tracks II contains two major components: the trace-collecting fron-
tend, and the death-time computing backend. The two components are com-
pletely decoupled from each other; as long as the frontend generates complete
program traces in a Elephant Tracks II-compatible format, the backend will
be able to compute accurate death records for the program trace, while the
accuracy of death records is completely up to the accuracy of the frontend.
In other words, the backend is completely agnostic about the frontend: the
language of the program being traced and the method used to do tracing is
irrelevant when it comes to death time computation.

Elephant Tracks II is primarily designed for Java and other languages
running on the Java virtual machine. For the sake of simplicity, we will refer
to both the backend and the JVM frontend as “Elephant Tracks II” without
qualification. However, Elephant Tracks II is not limited to Java and the
JVM: a frontend could be implemented for any programming language that
use heap allocation, pointers, and garbage collection at the implementation
level. Haskell, for example, does not have pointers or a memory model at
the language level as all data is immutable; however, heap allocation and
pointers are used by the Glasgow Haskell Compiler to implement functional
closures and lazy evaluation. Thus, it is possible to use Elephant Tracks

18

with the GHC implementation of Haskell 1. Although we did not implement
a Haskell frontend for ET2 in the work leading to this thesis, we will describe
a model for adapting ET2 to functional programming systems in chapter 5.

The algorithms and strategies used by the backend to compute death
times will be described in the next chapter. In the rest of this chapter, we
will mainly discuss the high-level design of ET2.

3.3 The frontend: trace collector

Memory tracing is inherently slow, and the trace collector is where most of
the problem is at. However, to safely optimize trace collection, we must
first decouple the trace collection phase from the computation phase. In
the Elephant Tracks II architecture, the implementation of the frontend, or
trace collector, is not defined. Instead, the implementer may select whichever
implementation technique that is appropriate. For Java, we have continued
to use bytecode rewriting as our main technique. However, for a native
code compiler-based languages implementation like the GHC, building trace-
generation into the runtime might be a more appropriate technique.

To calculate object death times, five types of traces are required: proce-
dure entry, procedure exit, object allocation, pointer updates, and witness.
Each trace must have a timestamp which is necessary for running Merlin. A
timestamp in the context of ET2 is a logical timestamp that impose a total
ordering on events; examples of good candidates for timestamps are the total
number of method entries and exits, or the total number of allocated bytes.
A physical timestamp, however, is not recommended as the trace collector
slows down program execution substantially. However, in the presence of
concurrency, a total ordering on events might not be appropriate. In that
case, we could potentially use techniques such as Lamport clocks (Lamport,
1978) to induce a partial ordering on events; however, this is still an open
research problem2.

1However, if there was ever a implementation of Haskell which does not use pointers
and heap-allocated memory in its memory model, such as an implementation directly on
a SECD machine, we will not be able trace Haskell programs in that implementation.
Fortunately, all practical Haskell compilers targeting the von Neumann architecture need
to use heap allocation and pointers.

2We will revisit this problem in the final chapter.

19

3.3.1 Types of traces

The procedure entry trace has the following format:

M <procedure-id> <receiver-object-id> <thread-id> <timestamp>

In case that the traced programming language is not object-oriented, or
that the method is global (e.g. a static method in Java), the receiver-object

-id should be 0. For a language without threading support, the thread ID
could be 0.

A series of P traces mark parameters to the called procedure, with one
trace accompanying one parameter. The P record has the following format:

P <procedure-id> <param-object-id> <thread-id> <timestamp>

The procedure exit trace has a similar format, only with the M replaced by
an E. A procedure might be exited due to either returning from the procedure
or a thrown exception (as implemented by throw in Java and raise in ML),
and ET2 does not discern between these different types of exits3.

The heap allocation trace has the following format:

<alloc-type> <object-id> <size> <type> <site> <length> <thread-id
> <timestamp>

There are two types of allocations: an allocation is either “singular” (as in
allocating a Java object) or “block” (as in allocating a Java array). An array
allocation (denoted by A) is deemed to have occured when a logically contigu-
ous section of memory is allocated for a sequential, homogenous collection
of objects (i.e. an array), and in all other cases an allocation is singular
(denoted by N). The object-id is an unique, numerical identifier which iden-
tifies a newly allocated heap object, while site is a globally unique, numerical
identifier for each site at which allocation occurs. The length field is only
needed for block allocations and represent the number of objects allocated
in the allocation; for singular allocations, this field shall be 0.

The pointer update trace, which is the most complex record of all, has
the following format:

U <old-target-id> <object-id> <new-target-id> <field-id> <thread-
id> <timestamp>

3Besides exceptions, other control operators, such as throw in Standard ML of New
Jersey, shift in Racket and coroutine.yield in Lua, can also result in a procedure
being exited without properly returning from the procedure. These should also be treated
as procedure exits.

20

The pointer update trace assumes the runtime memory model uses records
of pointers (i.e. similar to Java classes or C structs), but workarounds could
be designed for similar memory models. A U record denotes that a field (with
ID field-id) in an object (with ID object-id), which previously pointed to
old-target-id, now points to new-target-id, where both old-target-id and
new-target-id are IDs for memory objects.

The most important, but least intuitive trace type, the witness trace, has
the following format:

W <object-id> <thread-id> <timestamp>

The W trace tells us one and only one thing: a thread observed that an
object is alive at a given time. What counts as being alive is implementation-
defined, but it must only underestimate, and not overestimate liveness: oth-
erwise, the trace computation will identify live objects as being dead! For
example, for our Java implementation, we used a rather conservative method-
ology: an object is alive whenever it is used explicitly in a program, for
example, when a field is accessed, when an instance method is invoked on
the object, or when an reference the object is supplied as an argument to a
method. Note, for example, we only make conservative estimations: we only
assume an object is alive up to the time it was used as a method argument,
and do not assume that the object stays alive throught the method (which,
however, might be true unbeknownst to us).

Finally, there is a garbage collection trace that is generated on each invo-
cation of the garbage collector, which simply tells us that the GC has been
invoked by a certain thread at a certain point in time:

G <thread-id> <timestamp>

However, the G trace is optional, as the simulator could decide for itself
when to start simulating a GC.

3.3.2 Tracing a program

In Elephant Tracks II, a program is traced as it is executed, and the program
tracing frontend outputs the traces as the corresponding events occur. This
allows a program trace to fully and accurately capture the execution profile
of a program during a certain run of the program. Again, the ET2 framework
does not define how the tracer should be implemented, thus we would leave
discussion of our tracer for the next chapter.

21

3.4 The backend: GC simulator

Different ET2 frontends designed for different runtime systems may have
completely different implementations, but all of them share the same back-
end. The backend could be thought of as a simple “interpreter” for the traces:
essentially, it reads in a trace line by line, simulates the heap graph according
to the trace, simulates a garbage collection when prompted, and computes
the death times of objects that have died since the last GC invocation.

The backend has three different phases that run alternately: the simula-
tion phase and the computation phase.

3.4.1 The simulation phase

In the simulation phase, the simulator “regenerates” the program heap ac-
cording to the N, A, and U traces, and keeps track the current execution
environment by keeping a stack of procedure records according to the M and
E traces. The regenerated heap should have the same shape as the program’s
heap at runtime, if tracing is done correctly.

3.4.2 The computation phase

Whenever we reach a G record in our trace (or, in the absence of such records,
when a set of conditions trigger collection), the simulator enters the compu-
tation phase. In the collection phase, the simulator simply deletes from the
reconstructed heap graph all unreachable nodes following a simple mark-
sweep procedure.

However, since we do not have access to information about the program
in the simulator besides what is available in the traces, the garbage collection
roots could not be known precisely. In the next chapter we will describe a
few methods to approximate this collection phase.

As objects get garbage-collected, their death time would be computed us-
ing the Merlin algorithm. That is, the simulator tries to decide the “precise”
death time using a graph search. Again, we will leave the specifics to the
next chapter.

22

Chapter 4

Algorithms and
Implementation

A good design is neccessary for, but does not guarantee, good software. In
the case of Elephant Tracks II, the more streamlined and modular design
guides our implmentation and makes implementation much less painful and
more debuggable, but the implementation is still a difficult task, for which we
developed a few new techniques and algorithms to make the implementation
easier. In this chapter, we will describe the implementation both of the Java
frontend and of the backend, as well as the new techniques and algorithms
used to support the implementation.

4.1 Implementing the Java frontend

The Java frontend of ET2 is, like Elephant Tracks, still implemented as a
JVMTI agent (Oracle Corporation, 2013), and use bytecode rewriting as the
main implementation technique.

4.1.1 Bytecode rewriting: how and why?

Although other implementation techniques are possible, we believe that byte-
code rewriting is still the best implementation technique by far. In bytecode
rewriting, our JVMTI agent inserts a hook at the time of class loads, and at
each class load gets the bytecode of the class programmatically and rewrites
it to insert instrumentation calls. To analyze and manipulate Java bytecode,

23

we use the JNIF native instrumentation library (Mastrangelo and Hauswirth,
2014), which has the benefit that it is written in C++ and can be linked stat-
ically with our JVMTI agent, making instrumentation cheap and efficient.

Since Java does not support global procedures, all instrumentation calls
are static methods and placed into a separate class (called ETProxy) that is
loaded when ET2 is started. Then, a invokestatic bytecode instruction is
inserted at each event to call the instrumentation method. For example, for
a method entry event, a call to the method onEntry would be inserted.

ET2 assigns each class, method and object a unique numerical identifier,
and passes it to the instrumentation call in order to be used in the output.
In the trace, all classes, procedures and objects are identified with integers
in order to decrease the size of the trace.

However, why bytecode rewriting? From a virtual machine perspective,
it is expensive to break abstraction barriers and call outside of the segregated
virtual execution environment, due to the overhead needed to enforce the sep-
aration of environments. Moreover, modern JVMs have tracing just-in-time
compilers (JITs) that compile frequently executed code. Thus, it is naturally
economical to write all instrumentation calls natively, in Java, and bytecode
rewriting becomes the natural choice to insert those instrumentation calls
into the program.

4.1.2 Event detection

The event detection mechanism in ET2 is rather simple. In our event model,
each event corresponds to one or mode Java bytecode instructions. Thus, to
instrument an event, ET2 simply searches for the target bytecode instructions
in the bytecode for each method (using JNIF), and inserts a call to the
instrumentation method either before the instrumented bytecode instruction.
Most of the time, ET2 can simply manipulate the stack and duplicate all
arguments to the instruction, placing the necessary arguments at the top of
the stack.

However, there are a few tricky cases which have to be dealt with slightly
differently:

� object allocation: since an newly allocated object is, counter-intuitively,
not a Java object, we cannot pass it directly into an instrumentation
call. Instead, we “delay” the call until the object is fully initialized.
Specifically, we generate a new local variable slot, put a reference to

24

the newly allocated object into that slot, and search for the next call
to invokespecial (which should be the call to the new object’s con-
structor). We insert the instrumentation call after the call to the
invokespecial, when the object is fully initialized;

� constructors and static methods: we do not record the “receiving
object” for such methods, because they either do not exist (in the case
of static methods) or are not objects (in the case of constructors);

� allocation of multi-dimensional arrays: we treat the array as an
array of objects and then recursively generate traces for each sub-array;

� exception throws: we do not treat them specially (as in Elephant
Tracks) but instead as normal method exits.

There are currently still a few cases which we do not handle correctly.
Specifically, we skip trace generation for all native method calls, and we
do not handle reflective object creation correctly as of yet. However, Ricci
et al. (2013) describes a simple technique to capture native method calls (by
wrapping all native calls in a non-native method call), which should be easily
implementable. Handling reflective object creation is more tricky, but is also
possible, and, as such, mainly an engineering challenge (Ricci et al., 2013).
invokedynamic calls could not be instrumented, as JNIF does not support
the instrumentation of invokedynamic instructions; it is an open question as
to how such calls should be handled.

4.1.3 Witnessing object liveness

Object liveness is always a difficult problem in a complex enough language
like Java, even though we could technically get complete and accurate liveness
records using dynamic analysis. Specifically, it is hard to define what is a
“witness” for an object being alive. In Elephant Tracks II, we select a few
simple metrics for assessing object liveness:

1. an object must be alive if it is assigned to a variable (i.e. accessed
directly);

2. an object must be alive if one of its fields is accessed;

3. an object must be alive if one of its instance methods is called;

25

4. an object is alive if it is used as an argument to a method call. However,
it is not clear as to for how long is the object alive. In ET2, we assume
that using an object as an argument to a method call only guarantees
liveness of the object at method entry.

When any of these events are detected, ET2 inserts a call to an instru-
mentation method, which in turn produces a timestampped W trace for the
object.

4.1.4 A simple technique: bounded buffers

Since I/O operations are costly, it might be a good idea not to output traces
in every instrumentation call. Thus, ET2 uses a bounded buffer to store all
events and output all traces at once when the buffer is full. Whenever we
refer to “generating” a trace, we mean storing the event into the buffer for
subsequent output.

4.1.5 Timestamping events

The Merlin algorithm is driven by timestamps (Hertz et al., 2006), so it is
necessary to generate timestamps for each event, especially for W traces. In
ET2, we use a logical timestamp, i.e. an integer that increases through the
program’s execution trace, to timestamp events. Our timestamps form a
total order so that there is a strict ordering on the sequence of events.

Formally, we can define a timestamp function as a function TS : E → N
over the set of events E:

Definition 4.1.1 (Elephant Tracks II timestamps). Let E be the set of
Elephant Tracks II events that occur during a certain execution of a program
P . Let @ be the total order over E defined by chronological order during the
given execution of P , i.e. if in a certain execution event e1 happens before
e2, then we say e1 @ e2.

Then, a timestamp function is a total function TS : E → N that is
nondecreasing with respect to @, i.e., if e1 @ e2, then TS(e1) ≤ TS(e2). For
an event e, TS(e) is called its timestamp.

A simple timestamp for events would be the total number of bytes allo-
cated at the time of the event. Total bytes allocated is easy to calculate and
intuitively nondecreasing, as the total number of bytes allocated could not

26

decrease. However, allocation is not a frequent event among all events, and
thus there would be many different events with equal timestamps. Therefore,
the total number of bytes allocated, as a timestamp, has rather poor gran-
ularity. Another simple timestamping strategy would be to use a “method
clock”, in which each method entry or exit would increase the clock by 1.
This would have better granularity, as method entries and exits are much
more common; however, this could still result in many events having the
same timestamp.

For Elephant Tracks II, we propose a new timestamping strategy: using
the total number of executed bytecode instructions as a timestamp. Since
JNIF allows accessing the bytecode offset of each bytecode instruction (Mas-
trangelo and Hauswirth, 2014), this should be easily calculable by ET2. Be-
cause multiple events rarely happen at the same bytecode instruction, this
should result in very good granularity.

4.1.6 Processing names

In traces, all types (in a Java context, classes), procedures (i.e. methods)
and objects are represented by numerical identifiers. Elephant Tracks II use
a simple mechanism to generate identifiers for each class and method: for
each new class or method, the current ID count is incremented and assigned
to the class or method. Then, the name of the class or method is entered
into a table for future queries. For objects (which are unnamed whatsoever),
the built-in Java method System.identityHashCode is used. Two separate
names files, which record the name-ID mapping, are generated for methods
and classes, one for each.

4.1.7 Putting it together

In short, the ET2 Java fronend workflow is as following:

1. activate instrumentation when the JVM is fully initialized;

2. before each class is loaded (i.e. on JVMTI ClassFileLoadHook events),
intercept the class and pass the bytecode to the bytecode rewriter;

3. check each method in the class and search for interesting events, then
insert a call to an instrumenting method after the event;

27

4. when the method is running, the instrumentation calls are executed
and produce event records;

5. periodically, those records are outputted in the form of traces.

The workflow is greatly simplified compared to the workflow of Elephant
Tracks (Ricci et al., 2013), and no extra processes need to be forked. All in-
strumentation now occur inside the JVM process (either in the running Java
code or as part of the loaded JVMTI agent). Moreover, there is no need to
keep track of heap graphs or timestamps because computation is now sepa-
rated from tracing. Technically, ET2 should run on all standard-conformant
Java virtual machines, but some JVMs (such as OpenJDK 8 HotSpot) have
reported bugs due to unclear reasons. However, the most commonly used
commercial-grade JVM, Oracle JDK 8 HotSpot, is fully supported.

4.2 Adapting the Merlin algorithm

Elephant Tracks has full access to garbage collection information and can re-
move objects from the reference graph model accurately, i.e. at each garbage
collection. However, ET2 does not run inside the language runtime, and
instead calculates object death timestamps by simulating garbage collection.

As stack information is unavailable at analysis time, an accurate garbage
collection on the heap graph model could not be performed, but it is possible
to perform a “conservative” simulation by making reasonable assumptions
about garbage collection roots. Here, we describe a few different adaptations
of the Merlin algorithm that are based on a mark-sweep garbage collection
model:

4.2.1 The case without garbage collection

The simplest algorithm would be not to use garbage collection, construct-
ing a heap graph of all objects that have all been alive, and then calculate

28

timestamps for all objects all at once at the end of the simulation:

Algorithm 1: Merlin without GC

Function Initialization()

for each object do
TS(thisObj)←∞;

Function CalculateDeathTime(heapGraph)
workList← {all heap objects};
sort workList ascending by TS(o);
while workList is not empty do

currObj ← pop WorkList;
for each object pointed to by currObj do

TS(pointedObj) = max(TS(currObj), TS(pointedObj));
if TS(currObj) > TS(pointedObj) then

push pointedObj on workList;

Essentially, this algorithm performs a depth-first search on a directed
cyclic graph (with cycle detection) and propagates the smaller timestamp.

This algorithm is, relatively, the easiest to implement. However, using
no GC would drastically increase the memory footprint of the simulator and
result in a rather slow computation and the end of the simulation. Recall
that the time complexity of depth-first search is O(V + E), where V is the
number of objects and E is the number of pointers. Supposing that the
implementation uses 20 bytes to represent each heap object, a program with
1,000,000 objects and 10,000,000 pointers will create a memory footprint
of around 20 megabytes (which does not yet seem a lot) and perform a
very lengthy computation. When V and E increase, both time and space
complexity of the algorithm would drastically increase. Thus, omitting GC
would perhaps be a poor idea in practice.

4.2.2 Conservative root detection

Alternatively, we may use conservative root detection as our GC simulation
algorithm. Conservative root detection requires the tracer to mark all pa-
rameters to procedure calls using P records, and assume that all pointers,
once passed to a procedure as an argument, are alive throughout the lexical
scope of the procedure. To manage these evaluation contexts, we use a stack

29

to simulate the call stack and push all calls onto the stack. In short, our
algorithm proceeds as following:

1. whenever a procedure is called, set a mark on the stack;

2. push all parameters to the procedure on the stack;

3. inside the method, whenever a witness (W) record is found, push the
living pointer on the stack;

4. when the GC is invoked, start from all pointers on the stack and per-
form a depth-first search. Mark all objects reached;

5. run Merlin on the heap graph;

6. when a procedure is exited, pop the stack until we reach the mark, and
remove the current mark.

Note that this algorithm could not underestimate roots and could only
overestimate roots. Any object that has been alive inside a procedure will
be treated as alive throughout the procedure, even if the pointer pointing
to this object is now pointing to another object. Thus, this algorithm could
never collect an object that is not already dead by accident, and is safe to
run.

30

The pseudocode representation of the algorithm is as following:

Algorithm 2: GC with conservative root detection

refStack ← empty stack;
Function TraceRoots(trace)

for each trace do
if trace is procedure entry then

set a mark on refStack;

if trace is parameter or witness then
push refStack object;

if trace is procedure exit then
pop everyting above the latest mark;
delete mark;

Function SimulateGC(heapGraph)
for each object in rootStack do

traverseStack ← empty stack;
mark currObj; if currObj is not already marked then

push currObj on traverseStack;

while traverseStack is not empty do
currObj ← pop traverseStack;
for each object pointed by currObj do

if object is not already marked then
mark object;
push object on traverseStack;

run Merlin;
remove all unmarked objects from heapGraph;

4.3 Implementing the backend

Implementing the backend is relatively straightforward, although not com-
pleted by far. Mainly, we were able to reuse much of the old Elephant Tracks
simulator (which is written in the C++ programming language) and add
GC simulation/death time computation procedures to it. Specifically, we
implement algorithm modularity, in which each GC simulation/death time

31

computation algorithm is implemented as one implementation of a mod-
ule (i.e. class), so that adding new GC simulation algorithms is easy and
straightforward.

4.4 Some experimental results

Currently, ET2 has not been fully implemented, nevertheless it could be used
to generate some incomplete traces. We present some experimental profiling
results comparing the runtime efficiency of Elephant Tracks and ET2/Java.
All experiments are run on a Linux server with a six-core, 12-thread, 2.80
GHz Intel Xeon X5660 processor and 12 gigabytes of main memory. The
server runs Arch Linux with kernel version 4.13.12-1.

All timing experiments are performed using the time tool built in to GNU
Bash. We give both the real and user timing for each of the experiments:

Benchmark Raw ET ET2/Java

LambdaCalc 0.089 0.620 5.123

Table 4.1: real timing for each benchmark

32

Chapter 5

Extensibility

One of the merits of Elephant Tracks II is that it is highly configurable and
extensible. Unlike Elephant Tracks, which is “baked into” the Java model of
program execution, Elephant Tracks II is — more or less — language agnos-
tic. Specifically, although ET2 assumes a certain runtime model of programs,
the model is more or less accurate of most programming languages. Ex-
tending ET2 to other object-oriented programming languages like JavaScript
should be straightforward, although doing so might require significant engi-
neering effort. In this chapter, however, we will briefly describe extending
ET2 to non-object oriented programming languages, primarily functional
programming languages

5.1 Tracing von Neumann representations of

functional programming languages

Functional programming languages liberate programming from the von Neu-
mann style (Backus, 1978). However, most if not all of modern computers are
based on the von Neumann architecture. Thus, to represent functional pro-
grams in a von Neumann style, one needs to use special data representations
to represent elements of functional programming.

5.1.1 Functional closures

In implementations of functional programming languages, a closure is a data
structure representing functions combined with a mutable “store”, or eval-

33

uation environment. For example, consider the following Haskell function
makeAdder1:

Code snippet 5.1: makeAdder�
makeAdder : : Integer → (Integer → Integer)
makeAdder n = add
where

add m = m + n� �
Internally, the function makeAdder is represented as a functional closure

containing code and an environment containing n and add, while add is rep-
resented as another functional closure containing m in its environment. An
closure, thus, is essentially an heap-allocated structure containing a number
of out pointers, and is amenable to memory tracing.

add

mkAdder

n

m

add

In principle, in a pure functional programming language, none of the
pointers in closure structures should be updated. However, as a matter of
efficiency, many functional programming language runtimes use mutation
to support certain types of evaluation. Memory tracing, if implemented,
could help us understand “internal mutability” as a programming language
implementation technique.

5.1.2 Lazy evaluation and thunks

Lazy evaluation (Friedman and Wise, 1976) is an evaluation strategy and
language design technique frequently employed in functional programming
languages to support features such as infinite lists and streams, most no-
tably in the Haskell programming language, which uses lazy evaluation as
the default evaluation strategy (Hudak et al., 1992).

1Note that this function definition is, in fact, redundant. It is equivalent to simply
partially applying the function (+).

34

In Haskell and other lazy programming languages, lazy evaluation is im-
plemented using thunks, which are heap-allocated code wrappers2. For each
delayed (i.e. non-eager) computation, a thunk is allocated for it. For exam-
ple, cons (or, in Haskell, (:)) might wrap each argument in a thunk, forcing
the evaluation of either only when requested. This allows infinite lists to be
represented in finite memory.

However, thunk leaks are a major memory problem in Haskell. In Haskell,
virtually all calls are lazy, and thus almost every function call wraps its argu-
ments inside thunks. When a function has a very deep call tree, the number
of thunks allocated increases rapidly. Through memory tracing thunks, lan-
guage implementers could better understand the “hot” locations of trace
allocation and deallocation with greater accuracy.

5.2 Making sense of functional memory traces

Although we can add tracing to many functional programming languages by
modifying and extending their runtime systems, it is not a trivial task to
make sense out of the traces. Linked data structures and closures usually
map to language constructs (i.e., algebraic data types and lexically-scoped
functions) quite closely, but other kinds of heap-allocated structures (such
as thunks) might not map to language-level constructs straightforwardly.
To make sense of memory traces of functional programming languages, new
labeling mechanisms will need to be devised.

2One could also think of thunks as closures without captured environment.

35

Chapter 6

Related and Future Work

6.1 Future work

6.1.1 Increasing the accuracy of timestamps

In chapter 4, we gave a formal definition of timestamps. However, intuitive
as it might be, this definition actually presumes one thing that is not true of
all programs. Specifically, it presumes that all events are logically sequential
and naturally admits a total ordering. This is, however, not true for many
concurrent programs. For example, two events e1 and e2 might be concurrent
with each other, and e1 might occur earlier in one execution profile, while
e2 might occur later in another. The timestamp, thus, would depend on
execution environment and the scheduler in use.

Instead of imposing total ordering on all events, we may loosen this re-
quirement and instead analyze the set of events as a bounded lattice, where
all suprema correspond to thread joins and all infima correspond to thread
forks. Naturally, our timestamps would no longer be natural numbers, but
would instead use more complex mechanisms like Lamport clocks (Lamport,
1978) or vector clocks (Fidge, 1991). Using vector clocks for dynamic pro-
gram analysis is not a new thing (Bond et al., 2010), but modifying the Merlin
algorithm to use vector clocks is still an open problem. However, without
theoretical advances, the timestamping strategy for concurrent events could
not be improved.

36

6.1.2 Porting Elephant Tracks II to other languages

Elephant Tracks II employs a modular and easily extensible architecture,
and in principle any runtime system that uses heap allocated data structures
could be used with Elephant Tracks II. However, for each runtime system,
one needs to write a separate frontend implementation for ET2, which limits
the speed at which ET2 could be ported.

Currently, we only have a JVM frontend for ET2, but we have also been
considering implementing other frontends. A Haskell frontend is particularly
interesting, in part because Haskell uses lazy evaluation and is notorious
for using a lot of heap memory; with Elephant Tracks II, we could better
understand the factors responsible for Haskell’s inefficient memory use (or
perhaps discover, disappointingly, that there is little space for improvement).
Combined with techniques like dynamic space limits (Yang and Mazières,
2014) and strictness inference (Wang et al., 2016), memory tracing could
be used effectively towards optimization of the Glasgow Haskell Compiler’s
memory usage and leak problems. A Haskell frontend has been a goal of
this project, but unfortunately we have not been able to implement it due to
time constraints. Other frontends worth exploring including object-oriented
languages like JavaScript and functional languages like OCaml, but these are
currently not our priority.

6.2 Related work on object lifetime analysis

We call Elephant Tracks II a “memory analysis framework” because Elephant
Tracks II traces could be used for many different purposes, but at its core,
Elephant Tracks II is a lifetime analysis tool. However, there are many dif-
ferent approaches—which will be briefly discussed here—to lifetime analysis
besides the approach that Elephant Tracks II uses.

6.2.1 Static lifetime analysis techniques: regions and
region inference

Elephant Tracks II uses dynamic analysis to determine object lifetimes. As
such, it incurs a heavy runtime penalty such that precise analysis could be
conducted, and that accurate traces could be generated.

Thus, the huge overhead of Elephant Tracks II and other dynamic memory

37

tracing tools could be prohibitive in real world circumstances. For example,
one single execution of long-running applications like servers and daemons
might last days, months or even years, and it is almost impossible for a pro-
grammer to use Elephant Tracks II to analyze these applications. Naturally,
as with any kind of program analysis task, one might ask if there are static
instead of dynamic approaches to the same task. In this case, one may be
willing to give up some accuracy for efficiency, as analyses could now be
completed at compile time as opposed to at runtime.

The technique for static inference of object lifetimes has long existed. One
such algorithm, region inference (Tofte and Birkedal, 1998; Tofte and Talpin,
1994), is based on the concept of memory “regions”, which are simply blocks
of heap-allocated memory. In this memory model, heap memory management
is based on pushing and popping a stack of regions: an object is deallocated
when its containing region is popped from the “stack”. In other words, object
deallocation times and thus object lifetimes are decided statically. Both
the now-defunct ML Kit Standard ML compiler and the heavily optimizing
MLton (Fluet, 2018) compiler perform region analysis to complement garbage
collection. With some tweaking, one can turn a region inferencer into an
(approximate) “static memory tracer”.

Although Tofte and Birkedal (1998)’s algorithm does support imperative
features like reads and writes into references, the inference rules are still rel-
atively simplistic for more complicated imperative languages. The Cyclone
project attempts to use region inference to determine object lifetime stati-
cally in the context of low-level, imperative programming languages, and has
achieved good practical results (Grossman et al., 2002). However, although
in many cases the Cyclone compiler could perform region inference automati-
cally, sometimes explicit region annotations by the programmer are required,
making Cyclone incomplete as an object lifetime inference system.

6.2.2 Type-theoretic approach: linear and substruc-
tural type systems

For programming languages theorists and mathematically-inclined program-
mers, there is an even more straightforward approach to static object lifetime
analysis: that is, to (implicitly) encode lifetime information in objects’ types.
One category of such type systems is the substructural type systems, which
add usage constraints to its objects: for example, in a linear type system, all

38

values must be used exactly once; in an affine type system, a value can be
used no more than once (Walker, 2005). If combined with some type infer-
ence, a substructural type system effectively allows for compile-time inference
of object lifetimes.

Little has been done in using substructural type systems to determine
object lifetimes for real, sensible programs. However, the Rust programming
language (The Rust Project Developers, 2018) has introduced a substructural
type system into a systems programming language, and has been successful
in automatically determining lifetimes of values and objects using type infor-
mation. However, reference counting is still required in order to achieve refer-
ence sharing; moreover, there are certain cases where the lifetimes of function
parameters could not be determined automatically and where manual anno-
tations are required. Finally, there is no rigorous proof of the correctness of
Rust’s lifetime analysis, and bugs in the reference implementation have most
certainly been found, but more recently Jung et al. (2017) has proved the
correctness and consistency of a large subset of Rust, which includes many
of Rust’s lifetime inference rules.

6.2.3 Caveats of static analysis methods

However, one must note that none of the aforementioned static methods could
generate perfectly accurate death records for objects, as a simple corollary
of Rice’s theorem. For many practical purposes, statically generated “death
records” are sufficient, but dynamic analysis is still irreplaceable when pre-
ciseness is important (such as when evaluating the performance of garbage
collectors).

Moreover, it is extremely difficult to devise static analyses for industry-
strength programming languages. It is relatively simple to devise a region in-
ference algorithm for a well-defined and relatively simple language like Stan-
dard ML, but for more complex and less well-defined functional programming
languages such as Haskell, OCaml and Scala — not to mention imperative
programming languages like Java — such algorithms will be much harder or
even practically impossible to devise. Elephant Tracks II was designed and
developed by a college senior under the advisement of one professor, but even
a simple region inference algorithm for a small subset of Java would be much
harder to devise. If one takes into account the human cost of research and
development, dynamic analysis is still, by far, the most effective method to
generate memory traces.

39

6.3 The next step: using ET2 for (more) pro-

ductive purposes

The main body of this thesis describes the architecture and implementa-
tion of Elephant Tracks II, but relatively little is devoted to explaining why
Elepahnt Tracks II is useful. Indeed, as stated in the introduction, memory
traces generated by Elephant Tracks II could and have been used to profile
and improve garbage collector performance, detect memory leaks, and in-
struct programmers about their memory usage and help them evaluate their
programming practices. However, although memory traces could be used for
a number of feats, the traces are of little utility in their raw form: a few giga-
bytes of cryptic ASCII text. Nevertheless, the great value of memory traces
have only been occasionally explored. This section outlines some potential
directions for research and future work in the Elephant Tracks II project and
in memory tracing, in general.

6.3.1 Visualization

The visualization of memory traces is still an open research problem at the
moment, although it is difficult to deem the problem “closed” any time soon
since visualizations could always be improved and new visualizations could
always be developed. A simple, intuitive display of all heap objects over
time would be a poor choice, given the large number of allocated objects in a
complex enough program; moreover, even if the number of allocated objects
is small, most of the allocated objects are perhaps uninteresting to most
programmers. For example, a Scala programmer is probably not interested
in all function closures allocated during program execution.

Aftandilian et al. (2010) presents a tool, Heapviz, that is an improvement
to the straightforward approach by providing some summarization facilities,
allowing programmers to view a simplified and much more useful version of
the heap graph. However, Heapviz is still not good enough: for example,
it does not describe memory properties quantitatively, and it provides little
helps for programmers to improve their programs based on the traces that
they have collected. To fully harvest the information hidden in memory
traces and make them available to programmers, we need a more powerful
visualization tool, which does not exist as of yet. However, a team including
this author has been working on a new visualizer for Elephant Tracks and

40

Elephant Tracks II, which should provide more functionality than Heapviz.

6.3.2 Memory traces as a programming language

Memory traces could be though as code for a very simple programming lan-
guage operating on heap objects akin to C structures, with three basic oper-
ations: object allocation, pointer update, and object death (“deallocation”).
The GC simulator in Elephant Tracks II could thus be thought of as an in-
terpreter for this programming language. Although the GC trace language is
not a practical or useful language for programming, this small insight allows
us to use memory traces the way one uses a program.

6.3.3 Abstraction and analysis

There are many useful techniques to reason about and analyze the behavior
of pointers and heap objects. Some more prominent ones include separation
logic (Reynolds, 2002), shape analysis (Wilhelm et al., 2000), and escape
analysis. However, writing such analyses for full programs could be tedious.
Given that a memory trace is a simplified version of a full imperative program
that preserves only its heap properties, we might be able to run static analyses
on and verify program properties with those traces instead. For example,
instead of running shape analysis on a Java program, one might want to
instead run shape analysis on its trace to detect certain classes of memory
bugs. However, little work has been done in this field at the time of the
publication of this thesis.

6.3.4 Extracting useful information from memory traces

Memory traces contain a lot of useful information, but relatively little of
that has been utilized. Jensen et al. (2015) used memory traces to detect
the presence of memory leaks in JavaScript programs, but much more infor-
mation could be extracted from memory traces. Some of these information
can be easy to extract: with a little bit of effort, one could determine the
“cost centers” of a program given a trace, or methods/functions where most
memory is allocated; one can also obtain a time-function of heap size easily.

However, more interesting and useful information can be much harder
to harvest. Since Elephant Tracks II records the thread associated with
each trace entry, one could potentially use Elephant Tracks to discover race

41

conditions in programs. Moreover, as ET2 traces provides accurate object
death records, those traces could be used as heuristic hints for the garbage
collector. Using techniques akin to shape analysis, one could discover the
data structures used in the program. None of these potential uses of memory
traces have been explored as of yet (due to the cost-ineffectiveness of not
having a good memory tracer), but Elephant Tracks II should enable some
more productive uses of memory traces.

6.3.5 Combining static and dynamic analysis

Memory tracing is a form of dynamic analysis, but it can also be enhanced by
static analyses. For example, if combined with escape analysis and liveness
analysis, we can potentially make tracing more efficient, while also producing
more accurate traces. No work, however, has been done in this field as of
now.

42

Chapter 7

Conclusion

Memory tracing is a useful and valuable dynamic analysis that can help pro-
grammers understand how they use heap memory in their programs, but
it has also been a very costly and particularly inefficient analysis to per-
form, making it impractical for most purposes. In light of this problem, this
thesis presents a tool, Elephant Tracks II, that is designed to make mem-
ory tracing useful again. To attain this goal, Elephant Tracks II uses an
extensible, modular design, and the JVM frontend for Elephant Tracks II
particularly benefits from the modular architecture to improve the perfor-
mance of memory tracing. In short, the Elephant Tracks II project and this
thesis’s contributions are as following:

� providing an efficient, extensible and practical memory tracing frame-
work;

� developing an modular and effective architecture for memory tracing;

� proposing new algorithms and techniques for running the Merlin algo-
rithm offline;

� uncovering new insights into the Merlin algorithm;

� highlighting the importance of good design practices in research pro-
gramming.

In the final analysis, the Elephant Tracks II project provides a new effi-
cient, practical and extensible tool and architecture for memory tracing, as

43

well as new algorithms for and insights into running the Merlin algorithm of-
fline. However, a little goes a long way: Elephant Tracks II makes it possible
for program analysis researchers and practitioners to analyze memory usage
more easily, but we are still on our way to fully discover the value of memory
tracing and of Elephant Tracks II as a tool.

44

Appendix: Overview of Code
Repositories

All code written for this thesis is open-sourced and publicly available on
GitHub.

7.1 The red-black tree benchmark

The red-black tree benchmark is a simple benchmark used to investigate and
benchmark behavior in functional programming systems and runtime sys-
tems. The benchmark has been ported to four languages: Scala, Haskell,
Standard ML, and OCaml. We used the four ports to benchmark four
runtime systems: the HotSpot JVM & Oracle JDK, the Glasgow Haskell
Compiler (GHC), MLton, and the INRIA reference OCaml implementation,
respectively.

The red-black tree benchmark consists of three tasks: inserting one mil-
lion numbers (the integers 1 to 1,000,000) into an empty red-black tree,
printing the height of the red-black tree, and then in-order traversing the
red-black tree. The implementation of the red-black tree is based on Okasaki
(1999)’s purely functional implementation.

For code and build instructions, please visit: https://github.com/

ElephantTracksProject/rbtbench.

7.2 The Java micro-benchmark suite

The Java micro-benchmark suite is intended to benchmark the Java frontend
to Elephant Tracks 2. It consists of the following benchmarks, the first five
of which are written in Java and the latter two written in Scala:

45

https://github.com/ElephantTracksProject/rbtbench
https://github.com/ElephantTracksProject/rbtbench

� Hello: the “Hello, world!” program;

� BF: implements an interpreter for an esoteric, minimal programming
language;

� BinarySearchTree: builds two standard, imperative binary search trees,
inserts two sets of data into them, in-order traverses them, and calculate
their respective heights;

� LambdaCalc: implements a simple untyped, call-by-value λ-calculus
evaluator using a simple named representation, and attempts to β-
reduce the λ-term (λx . (x x)) (λy . y) (λz . z).

� NatArith: implements inductive natural number arithmetic (i.e., as im-
plemented in Coq and Idris) and conversion between natural numbers
and Java integers, and evaluates 1921+3385 using the implementation;

� FunctionalCounter: implements a counter using closure capture of local
variables, and invokes the counter a large number of times;

� FunctionalRBT: the same Scala red-black tree benchmark from the red-
black tree benchmark suite.

For code and build instructions, please visit: https://github.com/

ElephantTracksProject/benchmarks.

7.3 Elephant Tracks II

ET2 is contained in multiple repositories. The Java frontend is located
at: https://github.com/ElephantTracksProject/et2-java. Our fork
of the JNIF library, which is needed to build the Java frontend, is located
at: https://github.com/ElephantTracksProject/jnif.

7.4 Benchmark results

Unfortunately, due to the extraordinary time constraints under which this
thesis is written, we are not yet able to give sound benchmark results. As
a tool, Elephant Tracks II is still somewhat preliminary. Initial tests have

46

https://github.com/ElephantTracksProject/benchmarks
https://github.com/ElephantTracksProject/benchmarks
https://github.com/ElephantTracksProject/et2-java
https://github.com/ElephantTracksProject/jnif

shown that Elephant Tracks II should indeed be significant faster, and we
are confident that more throughout benchmarks will confirm this result.

However, we are still in the process of designing and running full bench-
marks. When benchmarks results are available, they will be linked to from
the Elephant Tracks II GitHub homepage.

47

Bibliography

Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L.
Su, and Samuel Z. Guyer. 2010. Heapviz: Interactive Heap Visual-
ization for Program Understanding and Debugging. In Proceedings of
the 5th International Symposium on Software Visualization (SOFTVIS
’10). ACM, New York, NY, USA, 53–62. https://doi.org/10.1145/

1879211.1879222

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J.
Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, V. Sarkar, and M. Trapp. 2005. The Jikes Research Vir-
tual Machine project: Building an open-source research community. IBM
Systems Journal 44, 2 (2005), 399–417. https://doi.org/10.1147/sj.

442.0399

John Backus. 1978. Can Programming Be Liberated from the Von Neumann
Style?: A Functional Style and Its Algebra of Programs. Commun. ACM
21, 8 (Aug. 1978), 613–641. https://doi.org/10.1145/359576.359579

Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010.
PACER: Proportional Detection of Data Races. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’10). ACM, New York, NY, USA, 255–268. https:

//doi.org/10.1145/1806596.1806626

Rodrigo Bruno, Lúıs Picciochi Oliveira, and Paulo Ferreira. 2017. NG2C:
Pretenuring Garbage Collection with Dynamic Generations for HotSpot
Big Data Applications. In Proceedings of the 2017 ACM SIGPLAN Inter-
national Symposium on Memory Management (ISMM 2017). ACM, New
York, NY, USA, 2–13. https://doi.org/10.1145/3092255.3092272

48

https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1145/3092255.3092272

Colin Fidge. 1991. Logical Time in Distributed Computing Systems. Com-
puter 24, 8 (Aug. 1991), 28–33. https://doi.org/10.1109/2.84874

Matthew Fluet. 2018. MLton. http://mlton.org/Home. (2018). Accessed
March 20, 2018.

Daniel P. Friedman and David S. Wise. 1976. CONS should not evaluate
its arguments. In Automata, Languages, and Programming (ICALP ’76).
Edinburgh University Press, Edinburgh, Scotland, United Kingdom, 256–
284. https://www.cs.indiana.edu/pub/techreports/TR44.pdf

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. 2002. Region-based Memory Management in Cyclone.
In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation (PLDI ’02). ACM, New York, NY,
USA, 282–293. https://doi.org/10.1145/512529.512563

Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S. McKin-
ley, and Darko Stefanović. 2002. Error-free Garbage Collection Traces:
How to Cheat and Not Get Caught. In Proceedings of the 2002 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’02). ACM, New York, NY, USA,
140–151. https://doi.org/10.1145/511334.511352

Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKin-
ley, and Darko Stefanović. 2006. Generating Object Lifetime Traces with
Merlin. ACM Trans. Program. Lang. Syst. 28, 3 (May 2006), 476–516.
https://doi.org/10.1145/1133651.1133654

Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fair-
bairn, Joseph Fasel, Maŕıa M. Guzmán, Kevin Hammond, John Hughes,
Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John
Peterson. 1992. Report on the Programming Language Haskell: A Non-
strict, Purely Functional Language Version 1.2. SIGPLAN Not. 27, 5 (May
1992), 1–164. https://doi.org/10.1145/130697.130699

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chan-
dra. 2015. MemInsight: Platform-independent Memory Debugging for
JavaScript. In Proceedings of the 2015 10th Joint Meeting on Foundations

49

https://doi.org/10.1109/2.84874
http://mlton.org/Home
https://www.cs.indiana.edu/pub/techreports/TR44.pdf
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/511334.511352
https://doi.org/10.1145/1133651.1133654
https://doi.org/10.1145/130697.130699

of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
345–356. https://doi.org/10.1145/2786805.2786860

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage Col-
lection Handbook: The Art of Automatic Memory Management (1st ed.).
Chapman & Hall/CRC.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: Securing the Foundations of the Rust Programming Lan-
guage. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017),
34 pages. https://doi.org/10.1145/3158154

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Commun. ACM 21, 7 (July 1978), 558–565. https:

//doi.org/10.1145/359545.359563

Luis Mastrangelo and Matthias Hauswirth. 2014. JNIF: Java Native Instru-
mentation Framework. In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ ’14). ACM, New York, NY, USA,
194–199. https://doi.org/10.1145/2647508.2647516

Diogenes Nunez, Samuel Z. Guyer, and Emery D. Berger. 2016. Prioritized
Garbage Collection: Explicit GC Support for Software Caches. In Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA
2016). ACM, New York, NY, USA, 695–710. https://doi.org/10.1145/

2983990.2984028

Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge Univer-
sity Press, New York, NY, USA.

Oracle Corporation. 2013. JVM Tool Interface 1.2.3. https://docs.oracle.
com/javase/8/docs/platform/jvmti/jvmti.html. (2013). Accessed
March 16, 2018.

Alan J. Perlis. 1982. Special Feature: Epigrams on Programming. SIG-
PLAN Not. 17, 9 (Sept. 1982), 7–13. https://doi.org/10.1145/947955.

1083808

50

https://doi.org/10.1145/2786805.2786860
https://doi.org/10.1145/3158154
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2647508.2647516
https://doi.org/10.1145/2983990.2984028
https://doi.org/10.1145/2983990.2984028
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808

RedLine Research Group. 2014. Elephant Tracks. http://www.cs.tufts.

edu/research/redline/elephantTracks/. (2014). Accessed March 16,
2018.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data
Structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS ’02). IEEE Computer Society, Washington, DC,
USA, 55–74. http://dl.acm.org/citation.cfm?id=645683.664578

Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Ele-
phant Tracks: Portable Production of Complete and Precise GC Traces.
In Proceedings of the 2013 International Symposium on Memory Man-
agement (ISMM ’13). ACM, New York, NY, USA, 109–118. https:

//doi.org/10.1145/2464157.2466484

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni, Walter
Binder, Nathan Ricci, and Samuel Z. Guyer. 2012. New Scala() In-
stance of Java: A Comparison of the Memory Behaviour of Java and
Scala Programs. In Proceedings of the 2012 International Symposium on
Memory Management (ISMM ’12). ACM, New York, NY, USA, 97–108.
https://doi.org/10.1145/2258996.2259010

The Rust Project Developers. 2018. The Rust Programming Language.
https://doc.rust-lang.org/book/second-edition/. (2018). Accessed
March 20, 2018.

Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM
Trans. Program. Lang. Syst. 20, 4 (July 1998), 724–767. https://doi.

org/10.1145/291891.291894

Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed
Call-by-value λ-calculus Using a Stack of Regions. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’94). ACM, New York, NY, USA, 188–201. https:

//doi.org/10.1145/174675.177855

Raoul L. Veroy and Samuel Z. Guyer. 2017. Garbology: A Study of How
Java Objects Die. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Onward! 2017). ACM, New York, NY, USA, 168–179.
https://doi.org/10.1145/3133850.3133854

51

http://www.cs.tufts.edu/research/redline/elephantTracks/
http://www.cs.tufts.edu/research/redline/elephantTracks/
http://dl.acm.org/citation.cfm?id=645683.664578
https://doi.org/10.1145/2464157.2466484
https://doi.org/10.1145/2464157.2466484
https://doi.org/10.1145/2258996.2259010
https://doc.rust-lang.org/book/second-edition/
https://doi.org/10.1145/291891.291894
https://doi.org/10.1145/291891.291894
https://doi.org/10.1145/174675.177855
https://doi.org/10.1145/174675.177855
https://doi.org/10.1145/3133850.3133854

David Walker. 2005. Substructural Type Systems. In Advanced Topics in
Types and Programming Languages, Benjamin C. Pierce (Ed.). MIT Press,
Cambridge, MA, USA, Chapter 1, 3–44.

Yisu Remy Wang, Diogenes Nunez, and Kathleen Fisher. 2016. Autobahn:
Using Genetic Algorithms to Infer Strictness Annotations. In Proceedings
of the 9th International Symposium on Haskell (Haskell 2016). ACM, New
York, NY, USA, 114–126. https://doi.org/10.1145/2976002.2976009

Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. 2000. Shape Analysis. In
Compiler Construction, David A. Watt (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–17.

Edward Z. Yang and David Mazières. 2014. Dynamic Space Limits for
Haskell. In Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 588–598. https://doi.org/10.1145/2594291.2594341

52

https://doi.org/10.1145/2976002.2976009
https://doi.org/10.1145/2594291.2594341

	Introduction
	Preliminaries and Previous Work
	Architecture
	Algorithms and Implementation
	Extensibility
	Related and Future Work
	Conclusion
	Appendix: Overview of Code Repositories
	Bibliography

