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Synopsis

Correspondence between type theory and category theory

• Simply-typed λ-calculus 
 cartesian closed categories

• Extensional Martin-Löf type theory → presheaf categoies

• Extensional calculus of constructions 
 elementary
toposes

• Intensional type theory 
 (∞, 1)-Grothendieck toposes
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Some category theory

exponential (Y X , ev) = “internal hom”. In Set:
Y X = X → Y

subobject classifier (Ω, true), “classifies” monomorphisms. In
Set: 2-element set.

cartesian closed category (CCC) category w/ all finite products
and exponentials

(elementary) topos category w/ all finite limits & colimits,
exponentials, and a subobject classifer
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Some category theory

Z × X

Y X × X Y

g×id

ev

f

Figure: UP for exponentials

S 1

X Ω
φ

true

Figure: the subobject classifier pullback diagram
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What is the simply typed
λ-calculus (STLC)?

a simple computational language for logic

Expressions (terms) and types:

function type (A→ B) functions λx .a, can be applied f a (or
f (a))

product type (A× B) pairs (a, b), canonical projections fst,
snd

singleton type (1) single inhabitant tt
reduction notion of computation, “applying functions”

βη-equivalence computational notion of equivalence,
observational equivalence/equality

(λx .x y)(λx .x)→ (x y)[x := (λx ′.x ′)]

→ (λx ′.x ′)y → x ′[x ′ := y ]→ y

5 / 24



Type theory
and the logic
of toposes

Some category
theory

STLC and
CCCs

Dependent
type theory

Intensional
and
extensional
type theory

Typing rules

Typing rules: Γ ` M : τ , “under Γ (context = mapping from
variables to types), M has type τ”

Typ-Abs
Γ; x : τ ` M : τ ′

Γ ` λ(x : τ).M : τ → τ ′

Typ-App
Γ ` M : τ → τ ′ Γ ` N : τ

Γ ` M N : τ ′
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The Curry-Howard correspondence

STLC considered as logic: types = proposition, terms = proof.

Proof as computation: prove B from A = computational
procedure to produce proof of B from proof of A.

Specifically: STLC = constructive propositional logic. → =
=⇒ , × = ∧, proves same propositions.
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STLC and CCCs (1): syntactic
category

Construct category from STLC:

• objects = types

• morphisms = functions (λx .M(x))

• composition of morphisms = composition of functions

• identity = identity function (λx .x)

This is a CCC!
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STLC and CCCs (2): the other
way round

“Interpret” STLC in a category: assign object to type, contexts
to products of types, terms to morphisms, etc.

Theorem: STLC can be interpreted in any CCC!

Construction: recursion on typing derivation, application as
evaluation map, λ as exponential, product as categorical
product, etc.

Important property: soundness. βη-equivalent terms have same
interpretation.
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STLC and CCCs (3): the
equivalence

Construction: to every CCC, can construct language w/ types
from objects, terms from morphisms, etc.

This language is STLC!

Result: “equivalence” between STLC and CCCs.
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Martin-Löf type theory
Problem with STLC: very weak, no quantifiers, impractical as a
logic.

Solution: Martin-Löf type theory (MLTT)
Π(x : A).B (dependent function) and Σ(x : A).B (dependent
product), extended version of → and × to allow type
depending on terms.

Curry-Howard: Π = ∀, Σ = ∃, equivalent to constructive
higher-order logic.

Close to “natural” mathematical language w/ unrestricted
quantification!
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The identity type

New type: a =A b, a type/proposition encoding equality of a
and b (propositional equality/equivalence).

• Curry-Howard: the proposition of logical equality

• Equivalent to observational/βη-equivalence

MLTT also has definitional/intrinsic notion of equality
Γ ` a ≡ b : A, used e.g. to decide if two things should be
considered equal in proof-checking.
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Universes

Problem: need “type of types” (e.g., to quantify over types in
Π or Σ)

Näıve solution: A : U , U : U (DANGER!, Russell’s paradox)

Proper solution: hierarchy of universes U0, U1, ..., such that
Ui : Ui+1

If Γ ` A typei then Γ ` A : Ui
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Category with families (CwF)

A categorical structure close to the syntax to type theory;
“scaffolding” for semantics.

• objects = contexts

• functors Ty(−) : C → Set, Tm(Γ;A) : Set

• for Γ : C and A ∈ Ty(Γ), an “extension” Γ.A : C
Close to syntax, so construct CwF structure on C = get a
model of MLTT in C
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Interlude: Grothendieck
construction

presheaf on C = functor Cop → Set (example: Yoneda functor
Hom(−,C ))

Grothendieck construction
∫
C F on presheaf F : Cop → Set =

“category of elements” of F . More precisely, pairs (X , p),
where X : C, p ∈ F (X ).

“Structured, categorized data to one unstructured big table”
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The presheaf model

Theorem: MLTT has a model in any presheaf category, i.e.
PSh(C) = [Cop;Set] where C small

Construct CwF from any presheaf category:

• context Γ = presheaf Γ

• Ty(Γ) = PSh(
∫
C Γ)

• each type is a presheaf i.e. a family of sets parametrized
by I : C
• other constructions
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The presheaf model: Π, Σ, =

Presheaf model can interpret Π, Σ, =:

• Π interpreted by family of functions interpreted by
morphisms f : J → I in C
• abstractly: right adjoint to pullback/base change functor

• Σ interpreted by categorical products in CwF (which exist
in any category of presheaves)

• = interpred by equalizers in CwF (which exist in any
category of presheaves)
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Bonus: MLTT in any topos

PSh(C) is a topos.
Can construct CwF in any elementary topos E!

• context Γ = object Γ : E
• same: “right adjoint to pullback functor”, product,

equalizer

• bonus: a universe of propositions
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The universe of propositions

Elementary toposes support, in addition to Ui , a universe Prop
of logical propositions

• Prop is impredicative: quantifications over Prop still in
Prop, so no universe levels needed

• Prop is proof-irrelevant: ` p ≡ q : P if P : Prop (any two
proofs of same proposition considered equal)

• The subobject classifier provides semantics for Prop

• MLTT + Prop = calculus of constructions (CoC);
elementary topos = CoC!
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Intensional vs extensional type
theory

Two different notions of equality: definitional/intrinsic equality
(definitional ≡), observational/extrinsic equality (≡βη,
propositional equality =A)

Generally: definitional equality ⊂ observational equality! There
are terms observationally equal but not definitionally equal.

Solution: either accept (intensional type theory), or fix by
making observationally equal terms definitionally equal
(“reflection rule”):

Eq-Ref

Γ ` p : x =A y

Γ ` x ≡ y : A
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Extensional type theory

Type theory + reflection rule = extensional type theory!
Consequences:

• uniqueness of identity proofs (UIP): if p, q : a =A b then
p =a=Ab q

• deciding typing (given Γ, a and A, check if Γ ` a : A)
becomes undecidable

• fits our intuition about equality, but computationally bad

Presheaf categories (and toposes in general) support only
extensional type theory! (because equalizers are unique)
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Interlude: ∞-categories

• Many different definitions

• One possible definition ((∞, 1)-category): a simplicial set
(presheaf on simplex category ∆) satisfying certain
conditions

• Roughly speaking: morphisms, 2-morphisms between
morphisms, 3-morphisms between 2-morphisms, etc.

• Can also define ∞ version of groupoid (∞-groupoid,
∞-category where all morphisms are (weak) equivalences)
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Homotopy type theory

In intensional TT, types A are groupoids (identities a =A b are
the invertible morphisms)

Identities of identities p =a=Ab q, etc., exist, so types are
∞-groupoids!
(Grothendieck’s homotopy hypothesis: ∞-groupoid ≡
topological space?)

Homotopy type theory (HoTT) = viewpoint of intensional TT,
types have inherent higher structure. This allows powerful
univalence axiom (equivalence ≈ equality), which is
incompatible with UIP.
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Models of intensional type theory

Since types have inherent homotopy structure, must take this
structure into consideration.

• simplicial set/cubical set (based on presheaf model) or
Quillen-style model category: presentations of
∞-categories, so inherently support homotopy structure

• any Lurie-style (∞, 1)-Grothendieck topos supports
intensional TT w/ univalence (Shulman, 2019)
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