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and the logic

of toposes SynopSIS

Correspondence between type theory and category theory

® Simply-typed A-calculus = cartesian closed categories
e Extensional Martin-Lof type theory — presheaf categoies

e Extensional calculus of constructions = elementary
toposes

® Intensional type theory = (00, 1)-Grothendieck toposes
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of toposes Some Category theory

Some category
theory

exponential (YX,ev) = “internal hom". In Set:
YX=X—=Y

subobject classifier (£2,true), “classifies” monomorphisms. In
Set: 2-element set.

cartesian closed category (CCC) category w/ all finite products
and exponentials

(elementary) topos category w/ all finite limits & colimits,
exponentials, and a subobject classifer
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theory

Some category theory
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Figure: the subobject classifier pullback diagram
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STLC and
CCCs

What is the simply typed
A-calculus (STLC)?

a simple computational language for logic

Expressions (terms) and types:

function type (A — B) functions Ax.a, can be applied f a (or
f(a))

product type (A x B) pairs (a, b), canonical projections fst,
snd

singleton type (1) single inhabitant tt

reduction notion of computation, “applying functions”

[Bn-equivalence computational notion of equivalence,

observational equivalence/equality

(Ax.x y)(Ax.x) = (x y)[x := (A .X)]
- (MX)y =2 X[X =y]—>y
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of toposes Typlng rUleS

STLC and
CCCs

Typing rules: = M : 7, “under ' (context = mapping from
variables to types), M has type 7"

TyP-ABS Typ-Arp
Mx:7FM:7 r-M:r7—+ Fr=N:r
TEXMx:T)M:7—1 r-MN:7
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STLC and
CCCs

The Curry-Howard correspondence

STLC considered as logic: types = proposition, terms = proof.
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STLC and
CCCs

The Curry-Howard correspondence

STLC considered as logic: types = proposition, terms = proof.

Proof as computation: prove B from A = computational
procedure to produce proof of B from proof of A.

Specifically: STLC = constructive propositional logic. — =
—>, X = /\, proves same propositions.
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STLC and
CCCs

STLC and CCCs (1): syntactic
category

Construct category from STLC:

objects = types
morphisms = functions (Ax.M(x))
composition of morphisms = composition of functions

identity = identity function (Ax.x)

This is a CCC!

8/24



Type theory
and the logic
of toposes

STLC and
CCCs

STLC and CCCs (2): the other
way round

“Interpret” STLC in a category: assign object to type, contexts
to products of types, terms to morphisms, etc.

Theorem: STLC can be interpreted in any CCC!

Construction: recursion on typing derivation, application as
evaluation map, A as exponential, product as categorical
product, etc.
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i STLC and CCCs (2): the other
way round

CTLC and Interpret” STLC in a category: assign object to type, contexts
cccs to products of types, terms to morphisms, etc.

Theorem: STLC can be interpreted in any CCC!

Construction: recursion on typing derivation, application as
evaluation map, A as exponential, product as categorical
product, etc.

Important property: soundness. Sn-equivalent terms have same
interpretation.
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equivalence

STLC and
CCCs

Construction: to every CCC, can construct language w/ types
from objects, terms from morphisms, etc.
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CCCs

Construction: to every CCC, can construct language w/ types
from objects, terms from morphisms, etc.

This language is STLC!
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Type theory
and the logic

s STLC and CCCs (3): the

equivalence

STLC and
CCCs

Construction: to every CCC, can construct language w/ types
from objects, terms from morphisms, etc.

This language is STLC!

Result: “equivalence” between STLC and CCCs.

10/24



Type theory
and the logic

of toposes Martin-Lof type theory
Problem with STLC: very weak, no quantifiers, impractical as a
logic.

Dependent

eSS Solution: Martin-Lof type theory (MLTT)
M(x : A).B (dependent function) and ¥X(x : A).B (dependent
product), extended version of — and x to allow type
depending on terms.

Curry-Howard: 1 =V, & = 3, equivalent to constructive
higher-order logic.

Close to “natural” mathematical language w/ unrestricted
quantification!
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Dependent
type theory

The identity type

New type: a =4 b, a type/proposition encoding equality of a
and b (propositional equality/equivalence).

® Curry-Howard: the proposition of logical equality

e Equivalent to observational/fn-equivalence
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Dependent
type theory

The identity type

New type: a =4 b, a type/proposition encoding equality of a
and b (propositional equality/equivalence).

® Curry-Howard: the proposition of logical equality

e Equivalent to observational/fn-equivalence

MLTT also has definitional /intrinsic notion of equality
Fa=b:A, used e.g. to decide if two things should be
considered equal in proof-checking.
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of toposes U n IVe rses

Problem: need “type of types”’ (e.g., to quantify over types in
Dependent n or Z)

type theory

Naive solution: A: U, U : U (DANGER!, Russell's paradox)

Proper solution: hierarchy of universes Uy, U, ..., such that
Ui - Uit
If I = Atype; then - A U;
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and the logic

e Category with families (CwF)

ooy A categorical structure close to the syntax to type theory;
type theor . " .
e “scaffolding” for semantics.

® objects = contexts
e functors Ty(—) : C — Set, Tm(I"; A) : Set
e forl:Cand A € Ty(I'), an “extension” A : C

Close to syntax, so construct CwF structure on C = get a
model of MLTT in C
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Type theory
and the logic

of taposes Interlude: Grothendieck
construction

Dependent presheaf on C = functor C°? — Set (example: Yoneda functor
type theory Hom(—7 C))

Grothendieck construction [, F on presheaf F : C°P — Set =
“category of elements” of F. More precisely, pairs (X, p),
where X : C, p € F(X).
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of taposes Interlude: Grothendieck
construction

Dependent presheaf on C = functor C°? — Set (example: Yoneda functor
type theory Hom(—7 C))

Grothendieck construction [, F on presheaf F : C°P — Set =
“category of elements” of F. More precisely, pairs (X, p),
where X : C, p € F(X).

“Structured, categorized data to one unstructured big table”
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The presheaf model

Theorem: MLTT has a model in any presheaf category, i.e.

Dependent
type theory

PSh(C) = [C°P; Set] where C small

Construct CwF from any presheaf category:

context ' = presheaf I

Ty(l) = PSh(fC )

each type is a presheaf i.e. a family of sets parametrized
by I:C

other constructions

16/24



Type theory
and the logic
of toposes

Dependent
type theory

The presheaf model: I1, ¥, =

Presheaf model can interpret 1, &, =:

® [ interpreted by family of functions interpreted by
morphisms f : J — [ in C

® abstractly: right adjoint to pullback/base change functor

® 3 interpreted by categorical products in CwF (which exist
in any category of presheaves)

e — interpred by equalizers in CwF (which exist in any
category of presheaves)
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and the logic

of toposes Bonus: MLTT in any topos

o PSh(C) is a topos.
Can construct CwF in any elementary topos £!
® context [ = object [ : £

® same: ‘“right adjoint to pullback functor”, product,
equalizer

® bonus: a universe of propositions
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of toposes The universe of propositions

Elementary toposes support, in addition to U;, a universe Prop
Dependent of logical propositions
type theory
® Prop is impredicative: quantifications over Prop still in
Prop, so no universe levels needed
® Prop is proof-irrelevant: F p=gq: P if P : Prop (any two
proofs of same proposition considered equal)
® The subobject classifier provides semantics for Prop
¢ MLTT + Prop = calculus of constructions (CoC);
elementary topos = CoC!

19/24



Type theory
and the logic
of toposes

Intensional
and

extensional
type theory

Intensional vs extensional type
theory

Two different notions of equality: definitional/intrinsic equality
(definitional =), observational/extrinsic equality (=g,
propositional equality =)

Generally: definitional equality C observational equality! There
are terms observationally equal but not definitionally equal.

Solution: either accept (intensional type theory), or fix by
making observationally equal terms definitionally equal
(“reflection rule”):

EQ-REF
lFp:x=ay
lEx=y: A
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Extensional type theory

Type theory + reflection rule = extensional type theory!
Consequences:
® uniqueness of identity proofs (UIP): if p,q: a =4 b then
P =a=,b4q
e deciding typing (given ', a and A, check if T F a: A)
becomes undecidable
® fits our intuition about equality, but computationally bad
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Extensional type theory

Type theory + reflection rule = extensional type theory!
Consequences:
® uniqueness of identity proofs (UIP): if p,q: a =4 b then
P =a=,b4q
e deciding typing (given ', a and A, check if T F a: A)
becomes undecidable
® fits our intuition about equality, but computationally bad

Presheaf categories (and toposes in general) support only
extensional type theory! (because equalizers are unique)
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Interlude: oco-categories

Many different definitions

One possible definition ((oo, 1)-category): a simplicial set
(presheaf on simplex category A) satisfying certain
conditions

Roughly speaking: morphisms, 2-morphisms between
morphisms, 3-morphisms between 2-morphisms, etc.

Can also define oo version of groupoid (co-groupoid,
oo-category where all morphisms are (weak) equivalences)
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Homotopy type theory

In intensional TT, types A are groupoids (identities a =4 b are
the invertible morphisms)

Identities of identities p =,—,5 g, etc., exist, so types are
oo-groupoids!

(Grothendieck’s homotopy hypothesis: oco-groupoid =
topological space?)
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Homotopy type theory

In intensional TT, types A are groupoids (identities a =4 b are
the invertible morphisms)

Identities of identities p =,—,5 g, etc., exist, so types are
oo-groupoids!

(Grothendieck’s homotopy hypothesis: oco-groupoid =
topological space?)

Homotopy type theory (HoTT) = viewpoint of intensional TT,
types have inherent higher structure. This allows powerful
univalence axiom (equivalence =~ equality), which is
incompatible with UIP.
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Models of intensional type theory

Since types have inherent homotopy structure, must take this
structure into consideration.

e simplicial set/cubical set (based on presheaf model) or
Quillen-style model category: presentations of
oo-categories, so inherently support homotopy structure

® any Lurie-style (00, 1)-Grothendieck topos supports
intensional TT w/ univalence (Shulman, 2019)
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