
References

Elephant Tracks II: Practical, Extensible Memory
Tracing

Xuanrui (Ray) Qi

Department of Computer Science,
Tufts University

Senior Honors Thesis Defense
May 3, 2018

Committee: Samuel Z. Guyer, Kathleen Fisher

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Goals of my thesis

Make memory tracing great again!

1 Make memory tracing fast(er)

2 Make memory tracing extensible and eventually available for
languages other than Java

3 Develop new, language-agnostic techniques to run the Merlin
algorithm

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

What is memory tracing?

Complete chronological record of what happened in the heap

Procedure entry & exit, allocations, pointers
updates/overwrites, deaths, etc.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated?

Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die?

Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then?

We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address?

Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated?

Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die?

Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then?

Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

What can we use memory traces for?

Evaluating GC performance

Help develop new GC algorithms

Learn new facts about object lifetime patterns (Veroy and
Guyer, 2017)

Find memory leaks (Jensen et al., 2015)

Help programmers understand their memory footprint

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How to get memory traces?

Through dynamic analysis/instrumentation

Generating records on each allocation, pointer update,
procedure entry/exit, etc.

What about deaths? They aren’t obvious through dynamic
analysis!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How to get memory traces?

Through dynamic analysis/instrumentation

Generating records on each allocation, pointer update,
procedure entry/exit, etc.

What about deaths? They aren’t obvious through dynamic
analysis!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How to get memory traces?

Through dynamic analysis/instrumentation

Generating records on each allocation, pointer update,
procedure entry/exit, etc.

What about deaths? They aren’t obvious through dynamic
analysis!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The solution

Compute them!

Compute each object’s idealized death time using the
Merlin algorithm (Hertz et al., 2006, 2002).

Idealized death time = latest time at which an object is shown
possible to be reached.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The solution

Compute them!

Compute each object’s idealized death time using the
Merlin algorithm (Hertz et al., 2006, 2002).

Idealized death time = latest time at which an object is shown
possible to be reached.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The solution

Compute them!

Compute each object’s idealized death time using the
Merlin algorithm (Hertz et al., 2006, 2002).

Idealized death time = latest time at which an object is shown
possible to be reached.

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Merlin

Td(o) = max(Ts(o), {Td(p) | ∀p : p → o})

Ts(o): last-accessed timestamp of object
Td(o): “idealized death time” of object

The death time of an object is the max of:

the last time it was accessed; and

the death times of all objects pointing to it

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Merlin

Td(o) = max(Ts(o), {Td(p) | ∀p : p → o})

Ts(o): last-accessed timestamp of object
Td(o): “idealized death time” of object

The death time of an object is the max of:

the last time it was accessed; and

the death times of all objects pointing to it

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Merlin: the algorithm

Use an iterative method to compute death times

“Propagate” timestamps by depth-first search

Example on the board

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How do we trace program execution exactly?

Instrument the program

Insert code on-the-fly to generate runtime traces

Important: whenever an object is used, emit a “witness”
record

Analyze traces to generate death records

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How do we trace program execution exactly?

Instrument the program

Insert code on-the-fly to generate runtime traces

Important: whenever an object is used, emit a “witness”
record

Analyze traces to generate death records

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How do we trace program execution exactly?

Instrument the program

Insert code on-the-fly to generate runtime traces

Important: whenever an object is used, emit a “witness”
record

Analyze traces to generate death records

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

How do we trace program execution exactly?

Instrument the program

Insert code on-the-fly to generate runtime traces

Important: whenever an object is used, emit a “witness”
record

Analyze traces to generate death records

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Can’t we already do this?

Yes, you’re right. There’s Elephant Tracks (Ricci et al., 2013).

But it’s slow, heavyweight, and not very portable...

And it only works for Java

That’s why we need a new tool...

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Can’t we already do this?

Yes, you’re right. There’s Elephant Tracks (Ricci et al., 2013).

But it’s slow, heavyweight, and not very portable...

And it only works for Java

That’s why we need a new tool...

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Can’t we already do this?

Yes, you’re right. There’s Elephant Tracks (Ricci et al., 2013).

But it’s slow, heavyweight, and not very portable...

And it only works for Java

That’s why we need a new tool...

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Can’t we already do this?

Yes, you’re right. There’s Elephant Tracks (Ricci et al., 2013).

But it’s slow, heavyweight, and not very portable...

And it only works for Java

That’s why we need a new tool...

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Elephant Tracks II architecture

Frontend: trace program, generate execution records,
timestamp events, etc.

Backend: do trace analysis, compute death records

Pluggable architecture: one backend, multiple frontends

Separates complex computations from slow tracing

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Elephant Tracks II architecture

Frontend: trace program, generate execution records,
timestamp events, etc.

Backend: do trace analysis, compute death records

Pluggable architecture: one backend, multiple frontends

Separates complex computations from slow tracing

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Elephant Tracks II architecture

Frontend: trace program, generate execution records,
timestamp events, etc.

Backend: do trace analysis, compute death records

Pluggable architecture: one backend, multiple frontends

Separates complex computations from slow tracing

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Frontend implementation

Currently, only Java frontend implemented

Uses JVMTI to instrument program bytecode at runtime

Uses JNIF (Mastrangelo and Hauswirth, 2014) to manipulate
bytecode

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Event detection in ET2/Java

Event detection: finding events that need to be traced

ET2/Java trace generation is not completely dynamic

Bytecode search for certain key instructions

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Event detection in ET2/Java

Event detection: finding events that need to be traced

ET2/Java trace generation is not completely dynamic

Bytecode search for certain key instructions

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Event detection in ET2/Java

Event detection: finding events that need to be traced

ET2/Java trace generation is not completely dynamic

Bytecode search for certain key instructions

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Instrumenting Java programs

52: aload_1

53: invokevirtual #9

56: goto 89

59: aload_0

60: getfield #3

63: ifnonnull 81

66: aload_0

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Instrumenting Java programs

52: aload_1

53: invokevirtual #9

##: invokestatic (method entry)

56: goto 89

59: aload_0

60: getfield #3

##: invokestatic (witness)

63: ifnonnull 81

66: aload_0

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Main optimizations

“Native” bytecode manipulation
ET : bytecode goes into a separate Java process, gets
rewritten, and then sent back (very slow)
ET2 : bytecode gets rewritten directly in the JVMTI agent
(much better)

Java-based instrumentation
ET : each instrumentation call is an FFI call to a C++
function (expensive)
ET2 : everything happens in Java (leverages JIT)

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Main optimizations

“Native” bytecode manipulation
ET : bytecode goes into a separate Java process, gets
rewritten, and then sent back (very slow)
ET2 : bytecode gets rewritten directly in the JVMTI agent
(much better)

Java-based instrumentation
ET : each instrumentation call is an FFI call to a C++
function (expensive)
ET2 : everything happens in Java (leverages JIT)

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The backend

Also called the GC simulator

Workflow: “execute” the trace, run GC simulation as
appropriate, compute death times after each GC

Few assumptions about the memory model!

Only assumptions: must have heap-allocated blocks, pointers,
and GC

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The backend

Also called the GC simulator

Workflow: “execute” the trace, run GC simulation as
appropriate, compute death times after each GC

Few assumptions about the memory model!

Only assumptions: must have heap-allocated blocks, pointers,
and GC

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

The backend

Also called the GC simulator

Workflow: “execute” the trace, run GC simulation as
appropriate, compute death times after each GC

Few assumptions about the memory model!

Only assumptions: must have heap-allocated blocks, pointers,
and GC

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Simulating GC

Problem: no exact knowledge of GC roots inside the traces, so
can’t run GC

Solution: use a approximate, conservative strategy!

Treat everything possibly alive in the current context as GC
roots

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Simulating GC

Problem: no exact knowledge of GC roots inside the traces, so
can’t run GC

Solution: use a approximate, conservative strategy!

Treat everything possibly alive in the current context as GC
roots

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Simulating GC

Problem: no exact knowledge of GC roots inside the traces, so
can’t run GC

Solution: use a approximate, conservative strategy!

Treat everything possibly alive in the current context as GC
roots

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

“Conservative root searching”

Keep a stack that simulates the call stack

Generate records for each parameter to procedure on entry

“Parameter” records and “witness” records pushed to the
stack

When GC triggered, use everything on the stack as root

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

“Conservative root searching”

Keep a stack that simulates the call stack

Generate records for each parameter to procedure on entry

“Parameter” records and “witness” records pushed to the
stack

When GC triggered, use everything on the stack as root

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

“Conservative root searching”

Keep a stack that simulates the call stack

Generate records for each parameter to procedure on entry

“Parameter” records and “witness” records pushed to the
stack

When GC triggered, use everything on the stack as root

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

“Conservative root searching”

Keep a stack that simulates the call stack

Generate records for each parameter to procedure on entry

“Parameter” records and “witness” records pushed to the
stack

When GC triggered, use everything on the stack as root

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Extending ET2

ET2 is extensible by design

One backend, multiple languages, multiple frontends

Same simple execution model

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Extending ET2

ET2 is extensible by design

One backend, multiple languages, multiple frontends

Same simple execution model

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Extending ET2

ET2 is extensible by design

One backend, multiple languages, multiple frontends

Same simple execution model

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why extend ET2?

Support different languages

Study memory use in functional programming languages

First-class functional closures
Lazy FPLs & thunks

Compare memory usage in different languages

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why extend ET2?

Support different languages

Study memory use in functional programming languages

First-class functional closures
Lazy FPLs & thunks

Compare memory usage in different languages

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Why extend ET2?

Support different languages

Study memory use in functional programming languages

First-class functional closures
Lazy FPLs & thunks

Compare memory usage in different languages

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Current state of ET2

ET2/Java is mostly usable

Some edge cases unimplemented (e.g. reflection)

Around 10-100 times faster than Elephant Tracks

ET2 backend is still work in progress (outside collaboration)

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

In the thesis...

Details on the architecture & trace format

Details on the algorithms described here

More about implementation specifics

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Thanks to my collaborators

Google: JC Beyler, Man Cao, Wessam Hassanein, Kathryn
McKinley, Ryan Rose, Leandro Watanabe
ANU: Steve Blackburn
(all in alphabetical order)

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

and finally...

Thanks to my committee...

and thanks to everyone who came today!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

and finally...

Thanks to my committee...
and thanks to everyone who came today!

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

References I

Matthew Hertz, Stephen M Blackburn, J Eliot B Moss, Kathryn S.
McKinley, and Darko Stefanović. 2002. Error-free Garbage
Collection Traces: How to Cheat and Not Get Caught. In
Proceedings of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’02). ACM, New York, NY, USA,
140–151. https://doi.org/10.1145/511334.511352

Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss,
Kathryn S. McKinley, and Darko Stefanović. 2006. Generating
Object Lifetime Traces with Merlin. ACM Trans. Program.
Lang. Syst. 28, 3 (May 2006), 476–516.
https://doi.org/10.1145/1133651.1133654

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing

https://doi.org/10.1145/511334.511352
https://doi.org/10.1145/1133651.1133654


References

References II

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish
Chandra. 2015. MemInsight: Platform-independent Memory
Debugging for JavaScript. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE
2015). ACM, New York, NY, USA, 345–356.
https://doi.org/10.1145/2786805.2786860

Luis Mastrangelo and Matthias Hauswirth. 2014. JNIF: Java
Native Instrumentation Framework. In Proceedings of the 2014
International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines,
Languages, and Tools (PPPJ ’14). ACM, New York, NY, USA,
194–199. https://doi.org/10.1145/2647508.2647516

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing

https://doi.org/10.1145/2786805.2786860
https://doi.org/10.1145/2647508.2647516


References

References III

Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013.
Elephant Tracks: Portable Production of Complete and Precise
GC Traces. In Proceedings of the 2013 International Symposium
on Memory Management (ISMM ’13). ACM, New York, NY,
USA, 109–118.
https://doi.org/10.1145/2464157.2466484

Raoul L. Veroy and Samuel Z. Guyer. 2017. Garbology: A Study of
How Java Objects Die. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward! 2017). ACM, New York, NY, USA, 168–179.
https://doi.org/10.1145/3133850.3133854

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing

https://doi.org/10.1145/2464157.2466484
https://doi.org/10.1145/3133850.3133854

	References

