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Goals of my thesis

Make memory tracing great again!

1 Make memory tracing fast(er)

2 Make memory tracing extensible and eventually available for
languages other than Java

3 Develop new, language-agnostic techniques to run the Merlin
algorithm
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What is memory tracing?

Complete chronological record of what happened in the heap

Procedure entry & exit, allocations, pointers
updates/overwrites, deaths, etc.
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Why do we need memory traces?

In a world where all memory is manually managed...

Do we know when memory is allocated? Yes! We allocated
that.

Do we know when objects die? Hopefully! If not, we will
forget to deallocate them and create leaks.

What happens if we reference a deallocated object or an
invalid pointer then? We don’t know exactly. But likely our
program will blow up.
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Why do we need memory traces?

In a world where all memory is heap-allocated and
automatically managed...

What happens if we reference a deallocated object or an
invalid pointer address? Nothing, because it can’t happen.
Yay!

But do we know when memory is allocated? Sometimes...

Do we know when objects die? Almost never...

Do we want to know these details, then? Yes!
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What can we use memory traces for?

Evaluating GC performance

Help develop new GC algorithms

Learn new facts about object lifetime patterns (Veroy and
Guyer, 2017)

Find memory leaks (Jensen et al., 2015)

Help programmers understand their memory footprint
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How to get memory traces?

Through dynamic analysis/instrumentation

Generating records on each allocation, pointer update,
procedure entry/exit, etc.

What about deaths? They aren’t obvious through dynamic
analysis!
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The solution

Compute them!

Compute each object’s idealized death time using the
Merlin algorithm (Hertz et al., 2006, 2002).

Idealized death time = latest time at which an object is shown
possible to be reached.
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Merlin

Td(o) = max(Ts(o), {Td(p) | ∀p : p → o})

Ts(o): last-accessed timestamp of object
Td(o): “idealized death time” of object

The death time of an object is the max of:

the last time it was accessed; and

the death times of all objects pointing to it
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Merlin: the algorithm

Use an iterative method to compute death times

“Propagate” timestamps by depth-first search

Example on the board
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How do we trace program execution exactly?

Instrument the program

Insert code on-the-fly to generate runtime traces

Important: whenever an object is used, emit a “witness”
record

Analyze traces to generate death records
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Can’t we already do this?

Yes, you’re right. There’s Elephant Tracks (Ricci et al., 2013).

But it’s slow, heavyweight, and not very portable...

And it only works for Java

That’s why we need a new tool...
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Elephant Tracks II architecture

Frontend: trace program, generate execution records,
timestamp events, etc.

Backend: do trace analysis, compute death records

Pluggable architecture: one backend, multiple frontends

Separates complex computations from slow tracing
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Frontend implementation

Currently, only Java frontend implemented

Uses JVMTI to instrument program bytecode at runtime

Uses JNIF (Mastrangelo and Hauswirth, 2014) to manipulate
bytecode

Xuanrui (Ray) Qi Elephant Tracks II: Practical, Extensible Memory Tracing



References

Event detection in ET2/Java

Event detection: finding events that need to be traced

ET2/Java trace generation is not completely dynamic

Bytecode search for certain key instructions
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Instrumenting Java programs

52: aload_1

53: invokevirtual #9

56: goto 89

59: aload_0

60: getfield #3

63: ifnonnull 81

66: aload_0
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Instrumenting Java programs

52: aload_1

53: invokevirtual #9

##: invokestatic (method entry)

56: goto 89

59: aload_0

60: getfield #3

##: invokestatic (witness)

63: ifnonnull 81

66: aload_0
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Main optimizations

“Native” bytecode manipulation
ET : bytecode goes into a separate Java process, gets
rewritten, and then sent back (very slow)
ET2 : bytecode gets rewritten directly in the JVMTI agent
(much better)

Java-based instrumentation
ET : each instrumentation call is an FFI call to a C++
function (expensive)
ET2 : everything happens in Java (leverages JIT)
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The backend

Also called the GC simulator

Workflow: “execute” the trace, run GC simulation as
appropriate, compute death times after each GC

Few assumptions about the memory model!

Only assumptions: must have heap-allocated blocks, pointers,
and GC
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Simulating GC

Problem: no exact knowledge of GC roots inside the traces, so
can’t run GC

Solution: use a approximate, conservative strategy!

Treat everything possibly alive in the current context as GC
roots
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“Conservative root searching”

Keep a stack that simulates the call stack

Generate records for each parameter to procedure on entry

“Parameter” records and “witness” records pushed to the
stack

When GC triggered, use everything on the stack as root
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Extending ET2

ET2 is extensible by design

One backend, multiple languages, multiple frontends

Same simple execution model
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Why extend ET2?

Support different languages

Study memory use in functional programming languages

First-class functional closures
Lazy FPLs & thunks

Compare memory usage in different languages
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Current state of ET2

ET2/Java is mostly usable

Some edge cases unimplemented (e.g. reflection)

Around 10-100 times faster than Elephant Tracks

ET2 backend is still work in progress (outside collaboration)
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In the thesis...

Details on the architecture & trace format

Details on the algorithms described here

More about implementation specifics
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Thanks to my collaborators

Google: JC Beyler, Man Cao, Wessam Hassanein, Kathryn
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ANU: Steve Blackburn
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and finally...

Thanks to my committee...

and thanks to everyone who came today!
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