
Type theory and the logic of toposes

QI, Xuanrui

A master’s thesis submitted to the

Graduate School of Mathematics, Nagoya University

Advisor: Professor Jacques Garrigue

Contents

1 Categorical and topos-theoretic preliminaries 6
1.1 Notation . 6
1.2 The Yoneda lemma . 6

1.2.1 A note on set theory . 6
1.3 Cartesian closed categories . 8
1.4 Toposes . 12
1.5 Geometric morphisms . 14

2 The simply-typed λ-calculus and cartesian closed categories 16
2.1 The simply-typed λ-calculus . 16

2.1.1 The untyped λ-calculus . 16
2.1.2 Simple types . 18
2.1.3 The Curry-Howard correspondence 23

2.2 STLC and cartesian closed categories 24
2.2.1 Syntactic categories . 24
2.2.2 Interpreting STLC in CCCs 25
2.2.3 The internal language of a category 28

3 Dependent type theory and presheaf semantics 29
3.1 Martin-Löf type theory . 29

3.1.1 Curry-Howard correspondence for MLTT 32
3.1.2 Universes . 32
3.1.3 The identity type . 33

3.2 Presheaf semantics for MLTT . 34
3.2.1 Categories with families . 34
3.2.2 The presheaf model . 36
3.2.3 Interpreting dependent types 37
3.2.4 Universes . 39

3.3 Other models of MLTT . 40

4 The identity type and the intensional-extensional dichotomy 41
4.1 Intensional and extensional type theory 41
4.2 The identity type in the presheaf model 42
4.3 Towards homotopy type theory . 43

4.3.1 Intensional type theory and higher categorical structure . . . 43
4.3.2 The univalence axiom . 45
4.3.3 A word on models . 46

1

5 Elementary toposes and the Calculus of Constructions 47
5.1 The universe of propositions . 47
5.2 The correspondence between calculus of constructions and elemen-

tary toposes . 48

2

Introduction

The goal of this thesis is to provide an survey of categorical logic from the per-
spective of λ-calculi and type theory. Particularly, this thesis is motivated by a
discussion on the Coq-Club mailing list [Sem21], asking whether the type theory
underlying the proof assistant Coq forms a topos. Therefore, the running goal of
this thesis is to find and construct a type theory that corresponds to the internal
language of a topos.

A type theory is a computational version of logic based on a simple computa-
tional language called the λ-calculus. The observation that a proof is essentially a
computation, and logical propositions can be interpreted as types of computations
(e.g., ∀x, P (x) means that given the input x, a proof of P (x) can be computed)
makes the λ-calculus a proper setting for logic and foundations of mathematics.
Particularly, Martin-Löf type theory, which will be introduced in Chapter 3 of this
thesis, is a simple setting for higher-order logic.

Here, we are interested in type theory as a model of higher-order logic: of-
ten, higher-order logic is presented in the style of a “type theory”. Every type
theory corresponds to a logical calculus; this is often called the “Curry-Howard
correspondence”. In our thesis, we consider three such equivalences: the simply
typed λ-calculus to intuitionistic propositional logic, Martin-Löf type theory to
constructive higher-order logic, and the extensional calculus of constructions to
(roughly) a slightly weaker version of our “everyday mathematical language”.

We begin with a brief overview of category theory, with many results and proofs
coming from [MM92], and then proceed to consider the simplest case of λ-calculi
and type theories: the simply typed λ-calculus. First, we introduce the compu-
tational rules and basic properties of the λ-calculus without introducing types,
and then introduce simple types to make our λ-calculus into a type theory. Then,
based on Lambek and Scott’s results [LS86], we give a correspondence between
the simply-typed λ-calculus and cartesian closed categories, a “nice” class of cate-
gories often used in mathematics. Particularly, we prove two theorems about this
correspondence:

Theorem. Any cartesian closed category is a model of the simply typed λ-calculus.

Theorem. The internal language of a cartesian closed category is simply typed
λ-calculus.

Chapter 3 is the technical core of this thesis. In chapter 3, we introduce Martin-
Löf type theory, a higher-order type theory that is sufficiently expressive to develop
much of mathematics. We then provide a semantics, or model, of MLTT, in
categories of presheaves. This construction, due to Hofmann [Hof97], serves as the
basis of interpreting type theory in categories, so we describe it in detail following

3

Huber’s presentation [Hub16]. This construction can be stated in the form of the
following theorem:

Theorem. The extensional Martin-Löf type theory has a model in a category of
presheaves of sets.

However, there are some discrepancies between our presentation of MLTT (usu-
ally called “intensional type theory”) and the behavior of the model (called “exten-
sional type theory”), which leads to chapter 4, which explains these discrepancies
as the difference between intensional and extensional type theory. We explain
why the presheaf model supports only extensional type theory, and introduce the
language of ∞-categories to describe informally a model for intensional type the-
ory based on ∞-categories. Moreover, following [Uni13], we introduce a powerful
axiom called univalence which holds in the ∞-category model.

Finally, in Chapter 5, we proceed to present the main goal of our thesis, which
is to describe a type theory that is closely related to a topos. Toposes are a
certain class of categories that can serve as a “universe” for mathematics. The
archetypal example of a topos is Set, the category of sets, which is the setting for
the usual kind of mathematics that we are familiar with; its internal language is
the mathematical language we are used to. However, any topos allows a form of
reasoning that is close to our mathematical intuition and which is strong enough
to develop a large part of modern mathematics. Synthesizing prior work in [Pit00;
Mai05], we show the following result, which is the main result of this thesis:

Theorem. The internal type theory of an elementary topos is the extensional
calculus of constructions, with a proof-irrevelant, impredicative universe of propo-
sitions.

This thesis assumes that a reader has some knowledge of category theory, as
covered in a textbook like [Mac98] or [Awo10]. It also requires the reader to have
some familiarity with the theory of propositional and first-order logic. However, it
requires no advanced knowledge of mathematical logic, or any knowledge of type
theory.

4

Acknowledgements

I thank my advisor, Professor Jacques Garrigue, for supervising me and guiding
me in writing this thesis. I also thank Dr. Takafumi Saikawa for helping me a
lot with the technical contents, especially chapter 3, and Dr. Reynald Affeldt for
helping find errors in this thesis and providing valuable feedback. Finally, I thank
the members of Types and Category Theory Zulip forums for answering questions
related to this thesis, and members of the Coq-Club mailing list, for discussions
that motivated and guided the writing of this thesis.

5

Chapter 1

Categorical and topos-theoretic
preliminaries

1.1 Notation

In this thesis, we use the calligraphic letters C, D, etc., for unspecified categories,
which are usually small categories. The letters E , F and G are reserved for toposes.

Objects of categories are denoted using capital letters, and X : C means that X
is an object of C; some authors prefer ∈, but depending on the foundation chosen,
C might not be a set (or there might be no membership relation ∈ at all), therefore
we use the foundation-neutral colon notation, reserving X : U to the case when U
is in fact a set.

Morphisms are denoted using small Latin letters f , g, h, etc., or small Greek
letters τ , σ, etc. Functors are also denoted using capital letters, but we use F , G,
H, etc., to avoid confusion with objects of categories. Sheaves and presheaves are
denoted using the same letters1.

HomC(X, Y) denotes the hom-set of morphisms between X and Y in a category
C; we also write Hom(X, Y) if the category is clear. We write PSh(C) for the
category of presheaves over C, in the literature, sometimes Ĉ is used.

In this thesis, the plural form of “topos” is always “toposes”, although some
authors and readers may prefer the Greek style “topoi”.

1.2 The Yoneda lemma

We begin our review of categorical notions with a restatement of the Yoneda
lemma, due to its central importance in category theory and in this thesis. It is
often considered the “fundamental theorem” of category theory. Here, we recall
the statement and fix some notations.

1.2.1 A note on set theory

The category Set will be used throughout the thesis. We give a definition below:

Definition 1.2.1 (category of sets). Set is the category of sets. The objects are
sets, and the morphisms are the functions/maps between sets.

1Because the French word for “sheaf” is “faisceau”.

6

In Zermelo-Fraenkel set theory with or without choice (ZF/ZFC), the collection
of all sets is not a set. Normally, one requires the collection of objects to be a proper
class, and call categories where the collection of objects is not a set a large category,
and otherwise a small category. If for any pair X, Y of objects, the collection of
morphisms between them is a set, then the category is additionally said to be
locally small. If one prefers to work in ZFC, then many constructions described in
this thesis require the assumption that some “base” category is small, or at least
locally small.

However, there are some problems with this approach. First of all, many inter-
esting categories are not small. Moreover, it can be dangerous to work with proper
classes, as they are not, and do not behave exactly like, sets; particularly, many
oddities may happen if one considers categories that are not locally small. Finally,
one runs into trouble defining categories like Cat, whose objects are categories:
it could not be defined as the category of all categories, as the collection of all
categories do not form a proper class; it could be defined as the category of small
categories, but this will exclude from Cat many categories that one might want
to consider.

Alternatively, one can realize Set as Setκ, the category of sets with cardinality
up to κ, where κ is a limit cardinal, and Cat as Catκ′ , the category of categories
for which the collection of items are sets of cardinality less than κ′, where κ′

is another limit cardinal larger than κ. A “small” category is a category for
which the collection of elements is a set of cardinality less than κ, and so on.
This solution avoids proper classes completely, but it requires some set-theoretic
techniques which will unnecessarily complicate our discussion.

To fix these problems, one can alternatively allow a hierarchy of Grothendieck
universes (for example, as done in Chapter I, Section 6 of [Mac98]). Then, one
may fix some universe U and say that a category is U -small (or just “small”) if
both the collections of objects and all collections of morphisms are sets in U . Then,
we can realize the category Set as the category SetU of U -small sets, where U is a
universe large enough to contain all “interesting” sets, and realize Cat as another
category CatU ′ where U ′ is a larger universes enough to contain all “interesting”
categories.

The use of Grothendieck universes allows a much cleaner solution to the size
problem, and often we will prefer this as our mental model. However, no con-
struction in this text require universes unless explicitly stated, so one could also
use either ZF(C)-based solution we have proposed above. Nevertheless, later on
in this thesis we will be transparent with regard to foundations, and use only the
terminology “small”, “locally small” and “large”. If one prefers limits cardinals
Grothendieck universes, the “smallness” criteria are with respect to an unspecified
limit cardinal or Grothendieck universe.

After on a long digression on set theory, we shall return to the Yoneda lemma,
which we state below:

Lemma 1.2.1 (Yoneda lemma). Let C be a locally small category. Then for any
functor F : Cop → Set, the map

(ϕ : HomC(−, c)→ F) 7→ F (c),

assigning to the natural transformation ϕ : HomC(−, c)→ F the object F (c), is an
bijection, for any object c of C.

7

Proof. The proof of the Yoneda lemma could be found in texts about category
theory, such as [Mac98] or [Awo10].

For each c : C, there is a functor y(c) = HomC(−, c) : Cop → Set, embedding
an object into its (contravariant) c-hom-set called the presheaf represented by
c (for reasons we will see later in this chapter). Moreover, y : C → [Cop; Set] itself
is also a functor, often called the Yoneda embedding functor.

1.3 Cartesian closed categories

This thesis focuses on the “computational trinity”, or the correspondence between
logic (and set theory), type theory, and category theory. Every category theory
corresponds to a type theory and thus a logic, but not all of them are interesting
enough. A cartesian closed category is simple enough as a category, but supports
enough structure to interpret a large amount of logic in it. These are the first
objects we will study in this thesis.

Cartesian closed categories have a terminal object and all binary products,
and this allows for many basic constructions in the category. We also require
another structure, the exponential, in the category, which, on the other hand,
could be though of as an “internal” hom in the category. The precise definition of
exponential objects follow:

Definition 1.3.1 (exponential objects). Let C be a category, and X, Y objects of
C. Assume that C has all binary products with X. Then an exponential object
is an object Y X along with a universal morphism ev : Y X × X → Y , also called
the evaluation morphism2.

In other words, Y X is an exponential object if for any object Z of C and
morphism f : Z ×X → Y , there is a unique morphism g : Z → Y X such that the
following diagram commutes:

Z ×X

Y X ×X Y.

g×id

ev

f

Observation 1.3.2. In the case that C is locally small, there is a canonical isom-
rophism Hom(Z × X, Y) ∼= Hom(Z, Y X), give by the map f 7→ g, which is a
bijection due to the unique existence of g for each f .

Proof. This follows directly from the unique existence of g for each f .

Definition 1.3.3 (cartesian closed category). A category C is a cartesian closed
category (or often just CCC) if it has a terminal object, all binary products, and
all exponentials.

Exponential objects can also be defined equationally ([Awo10]).

2or the evaluation “map”, by an abuse of language.

8

Lemma 1.3.1 (equational definition of exponentials). A category C has expo-
nentials if for each pair of objects X, Y , there is an object Y X and a morphism
ev : Y X × X → Y such that for each morphism f : Z × X → Y , there is a
morphism f̃ : Z → Y X (also called the transpose of f), such that the following
equations hold:

ev ◦ (f̃ × idX) = f

˜ev ◦ (g × idX) = g

Proof. Diagram chasing.

Many interesting categories have exponential objects:

Example 1.3.4. In the category Set, the exponential object Y X is the set of
functions from X to Y . The evaluation morphism is the usual evaluation map:
ev(f, x) = f(x).

Definition 1.3.5 (presheaf). Let C be a category, usually small or locally small.
Then the category [Cop; Set] of contravariant functors from C to Set is called the
category of (set-valued) presheaves (or preshaf category) over C, and often denoted
PSh(C). A functor Cop → Set is called a presheaf over C.

Proposition 1.3.2. Let C be a small category. The presheaf category PSh(C) =
[Cop; Set] has exponential objects. (Proposition 1 of I.6, [MM92].)

Proof. First, for the definition of exponentials to make sense, we need to have
products in PSh(C). The binary products are defined pointwise i.e. (F ×G)(C) =
F (C)×G(C), and it is routine to verify that this definition indeed yields a product.

We proceed by deriving the expression for exponentials in PSh(C) first, and
then prove that it is indeed an exponential.

To derive the expression, we may assume that PSh(C) has exponentials. Then
we have an isomorphism Hom(H × F,G) ∼= Hom(H,GF), where F , G and H are
presheaves on C.

Now, consider the case H = y(C) = HomC(−, C), where C is an object of
C and y is the Yoneda embedding. By the Yoneda lemma one has: GF (C) =
Hom(y(C), GF) = Hom(y(C)× F,G).

One could then define the exponential GF as c 7→ Hom(y(C)× F,G). Clearly,
this is a functor Cop → Set, assigning to every object C the set of natural trans-
formations between y(C)×F and G. Note that this requires our assumption that
C is small; otherwise, the collection of morphisms from y(C) × F to G do not
necessarily form a set.

We need to verify that this is indeed an exponential. Associate with it an
evaluation map ev : GF × F → G. This is a natural transformation again, so one
could define it by components:

evC(θ, y) = θC(idC , y) ∈ G(C)

for c : C, θ : HomC(−, C)× F → G, and y : F (C).

9

Moreover, for each any natural transformation φ : H × F → G one can find a
(unique) φ : H → GF such that the diagram

H × F

GF × F G

φ′×id

e

φ

commutes. For each c : C and u ∈ H(C), we need tp find an element φc(u) ∈
GF (C), i.e. a natural transformation φ′c(u) : HomC(−, C) × F → G (see the
isomorphism above). For any f : D → C and x ∈ F (D), we can define: (φ′C(u))D :
HomC(D,C)× F (D)→ G(D), (f, x) 7→ φD(u ◦ f, x).

This is natural in D, and one can verify that evC(φ′C(u), y) = φC(u, y), so the
diagram above commutes. Therefore, the definition of φ′ is completed, and thus
GF as defined above is indeed the exponential of G with F .

The previous examples show that many familiar categories are cartesian closed.
All categorical products are defined up to isomorphism:

Example 1.3.6. Set is cartesian closed. The terminal object is the one-element
set, the categorical product is the cartesian product, and ST is the set of functions
T → S.

Example 1.3.7. FinSet, the category of finite sets, is cartesian closed. The
constructions are exactly identical to those in Set.

Example 1.3.8. Cat, the category of categories and functors, is cartesian closed.
The terminal object is the single-object category, and the categorical product is
given by the product of categories. We ignore size issues, as well as the 2-category
structure on Cat, for readers familiar with higher category theory.

Proposition 1.3.3. Let C be a small category. The category PSh(C) is cartesian
closed.

Proof. Proposition 1.3.2 shows that PSh(C) has products and exponentials. The
terminal object in PSh(C) is the constant presheaf that maps every object to the
one-object set {∗}.

It is well known from category theory that any preordered set can be considered
a category: the objects are the elements of the poset, and there is a morphism
x → y if x ≤ y. Here, we show that a certain class of posets are cartesian closed
as categories.

Definition 1.3.9 (lattice). A lattice is a poset L with a meet (or infimum)
operator ∧ and a join (or maximum) operator ∨, satisfying the following axioms:

• x ∧ y ≤ x and x ∧ y ≤ y. Similarly, x ≤ x ∨ y and y ≤ x ∨ y;

• if z ≤ x and z ≤ y, then z ≤ x ∧ y;

• similarly, if x ≤ z and y ≤ z, then x ∨ y ≤ z.

10

Both ∧ and ∨ need to be total operators, i.e., any pair of elements in L have
a meet and a join.

It is easy to see that ∧ and ∨ are “formally dual”, if one considers L a category.
In fact, the following fact is true for lattices.

Proposition 1.3.4. A lattice has all binary products and all binary coproducts
when considered as a category, with the binary product given by the meet and
binary coproduct given by the join.

Proof. Let x, y ∈ L where L is a lattice. We have x × y = x ∧ y; the canonical
projections exist because x ∧ y ≤ x and x ∧ y ≤ y. Moreover, for z ∈ L such that
z ≤ x z ≤ y (i.e., there are morphisms from z to x and from z to y), there is a
morphism z → x×y, since z ≤ (x∧y) by definition. Note that in L, by definition,
there is at most one morphism between any pair of objects, so the uniqueness
condition is redundant.

The proof for x ∨ y is essentially the same.

However, a lattice need not have initial and terminal objects, so it does not
have all products and coproducts. We may fix this subtle problem by introducing
a minimum and a maximum element.

Definition 1.3.10 (bounded lattice). A bounded lattice is a lattice with a
minimum object ⊥ and a maximum object >, such that x∧> = x and x∨⊥ = x.

Proposition 1.3.5. A bounded lattice has all products and all coproduts when
considered as a category. The initial object is ⊥ and the terminal object is >.

Proof. A lattice already has all non-nullary products and coproducts (by the to-
tality of ∧ and ∨). The nullary product is just the terminal object, which is >
since x ≤ > for any x. Similarly, the nullary coproduct is the initial object, which
is ⊥.

Now, we can finally define the class of “nice” posets we want. Readers familiar
with denotational semantics or constructive logic will be familiar with the following
definition.

Definition 1.3.11 (Heyting algebra). A Heyting algebra is a bounded lattice
with an operator =⇒ (sometimes called the implication) operator, such that
x ∧ a ≤ b if and only if x ≤ a =⇒ b.

Proposition 1.3.6. A Heyting algebra, when considered as a category, has expo-
nential objects. The exponential of two objects x, y is given by x =⇒ y.

Proof. The evaluation morphism is (x =⇒ y) ∧ x ≤ y. The transpose of a
morphism x ∧ y ≤ z is x ≤ y =⇒ z. The two equations satisfied by exponentials
can then be verified.

Corollary 1.3.7. A Heyting algebra is a CCC when considered as a category.

Heyting algebras are closely connected to topological spaces. In other words,
topology is a rich source of Heyting algebras.

11

Example 1.3.12. Let X be a topological space. Then, the collection of open sets
of X, ordered by inclusion, forms a Heyting algebra.

Proof. As one expects, the meet is intersection, the join is union, the mimimum
object is ∅, and the maximum object is X. The fact that O(X), the collection
of open sets of X, forms a bounded lattice follows directly from the axioms of a
topological space.

The definition of the implication operator is more subtle. It is given by U =⇒
V = ((X\U) ∪ V)◦, where −◦ is the interior operator. One can verify that this
satisfies the laws of a Heyting algebra.

1.4 Toposes

A topos is a category that behaves like a mathematical universe, in some senses.
Before giving a rigorous definition, we will first show some examples:

Example 1.4.1. The category Set of sets. The objects are sets (according to some
set theory), and the morphisms are functions between sets. Morphism composition
is just the composition of functions.

Example 1.4.2. The category FinSet of finite sets. The objects are finite sets,
the morphisms are functions between sets, and composition is again just function
composition. This is a full subcategory of Set.

We recall the definition of a full subcategory:

Definition 1.4.3 (full subcategory). A full subcategory D of C is a subcategory
such that for each pair of objects X, Y : D, we have HomD(X, Y) = HomC(X, Y).

Example 1.4.4. Given any small category3 C, the presheaf category PSh(C) =
[Cop; Set] is a topos.

Example 1.4.5. The category Sh(X) of sheaves on a topological space X, or
more generally the category Sh(C) on a site C.

We give the definition of sheaves in the simple case, i.e., a sheaf on a topological
case:

Definition 1.4.6 (sheaf). A sheaf F of sets over a space X is a presheaf of sets on
the category of opens of X, O(X), such that for each open covering U =

⋃
i∈I Ui

of a open set U ⊆ X, the diagram

F (U)
∏

i F (Ui)
∏

i,j F (Ui ∩ Uj)e
p

q

is an equalizer diagram.
The maps e, p and q are defined as following. For any t ∈ F (U), e(t) = {t|Ui

|
i ∈ I}, and for any family ti ∈ F (Ui) indexed by i ∈ I, p(ti) = {ti|Ui∩Uj

} and
q(tj) = {tj|Ui∩Uj

}.
The definition of a sheaf of groups, rings, etc., can be obtained by replacing

“sets” with “groups”, “rings”, etc.

3or, if using Grothendieck universes, U -small for some universe U . Similarly, “locally small”
would mean U -locally small.

12

More generally, sheaves can be defined over any site, or category with a Grothendieck
topology. We will not discuss this case here, and refer the interested reader to
Chapter III of [MM92]. Sheaves are ubiquitous in mathematics: for example, both
manifolds in differential/complex geometry, and schemes in algebraic geometry,
can be defined as “spaces associated with a particular sheaf”. Therefore, sheaves
are an abundant source of toposes.

Next, we shall present the formal definition of a topos. To be precise, there are
two basic notions of toposes: elementary toposes, which originate in logic, and
Grothendieck toposes, which originated in Grothendieck’s algebraic geometry.
When we say only “topos”, we mean an elementary topos. Here, we will focus on
the notion of an elementary topos. Roughly speaking, an elementary topos is a
category that behaves closely enough to Set so that mathematical language could
be used in the category.

The most essential structure that makes toposes powerful is that of the subobject
classifier :

Definition 1.4.7 (subobject classifier). Let C be a category with finite limits. A
subobject classifier is a monomorpshism true : 1 → Ω into a fixed object Ω,
where 1 is a terminal object in C, such that for any monic S → X in C there is a
unique morphism φ : X → Ω, such that

S 1

X Ω
φ

true

is a pullback square.
The object Ω is sometimes called the object of truth values.

Intuitively speaking, the subobject classifier provides a notion of “truth values”
and “inclusion” in a category, enabling one to consider the objects of the category
to be set-like.

Then, we can formally define the notion of elementary topos:

Definition 1.4.8 (elementary topos). An elementary topos is a category with:

1. all finite limits and colimits, i.e. any diagram J → C, where J is finite, has
a limit/colimit;

2. exponential objects;

3. a subobject classifier.

An elementary topos is apparently also a CCC:

Proposition 1.4.1. Any topos is cartesian closed.

Proof. A topos has a terminal object and all binary products since both are finite
limits. It also has all exponential objects by definition.

Set is the canonical example of a topos. Particularly, we show that it has a
subobject classifier:

13

Example 1.4.9. In Set, (roughly speaking) there are two truth values, “true”
and “false”. Therefore, the set of truth values is 2 = {0, 1}. The one-element
set, 1 = {∗}, clearly embeds into 2. Moreover, any inclusion S ⊆ X could be
considered as a function X → 2:

φS(x) =

{
0, x /∈ S
1, x ∈ S.

One can verify by a simple diagram chase that this makes the following diagram
a pullback square:

S 1

X 2

ι

φS

true

where true is defined as the embedding ∗ 7→ 1.

A category of presheaves on a small category also has a subobject classifier:

Proposition 1.4.2. Let C be a small category. The presheaf category PSh(C) has
a subobject classifier.

Proof. The subobject classifer is the functor Ω : Cop → Set which sends C : C to
the collection of subfunctors of y(C), i.e. the functors/presheaves S : Cop → Set
such that there is a monic S ↪→ y(C). For details, see Chapter I, Section 4
of [MM92].

Furthermore, both Set and the PSh(C) (where C is small) are toposes.

Proposition 1.4.3. Set is an elementary topos.

Proof. A category is complete (i.e., has all small limits) if it has all equalizers
and all small products (Corollary 2, Section 2, Chapter V, [Mac98]). Set has
all equalizers and all finite products, so it is complete. Similarly, Set has all
coequalizers and all finite coproducts, so by duality it is also cocomplete. The
existence of exponentials and a subobject classifier have both been proven in this
thesis.

Proposition 1.4.4. Let C be a small category. PSh(C) is an elementary topos.

Proof. In PSh(C), all finite limits and colimits can be computed pointwise (Sec-
tion 3, Chapter V, [Mac98]), so all finite limits and colimits exist since Set has
both. By Proposition 1.3.2 and Proposition 1.4.2 PSh(C) has exponentials and a
subobject classifier, so PSh(C) is a topos.

1.5 Geometric morphisms

A notion of toposes is not complete without the notion of morphisms between
them. Naturally, one may think that a morphism between toposes is one that
“preserves structure”:

Definition 1.5.1 (logical functor). Let E , F be elemetary toposes. A functor
F : E → F is called a logical functor if it satisfies the following conditions:

14

1. F preserves all finite limits;

2. the canonical morphism φA : F (ΩA)→ ΩF (A) is an isomorphism.

This is a valid definition and has some applications in topos theory. However,
we are in general more interested in another notion of toposes, the notion of a
geometric morphism.

First, we recall the definition of adjoint functors:

Definition 1.5.2 (adjoint functor). Let C, D be categories, and F : C → D,
G : D → C functors. Then we say F and G are adjoint functors if there is a
natural bijection between Hom(F (X), Y) and Hom(X,G(Y)) for every X : C and
Y : D.

We write F a G if F and G are adjoint. F is called the left adjoint, and G is
called the right adjoint.

The definition of geometric morphisms follows:

Definition 1.5.3 (geometric morphism). Let E , F be toposes. A geometric
morphism between the pair of toposes, f : E → F consists of a pair of adjoint
functors: the direct image f∗ : E → F , and the inverse image f ∗ : F → E , such
that the left adjoint f ∗ preserves finite limits.

15

Chapter 2

The simply-typed λ-calculus and
cartesian closed categories

2.1 The simply-typed λ-calculus

A λ-calculus is a syntactic system for reasoning and computation. It consists of a
number of variables and terms, as well as reduction rules that govern how terms
reduce, i.e. compute. We will first give a simple example, the untyped λ-calculus.

2.1.1 The untyped λ-calculus

The untyped λ-calculus has only three basic forms: variable, abstraction and ap-
plication. A variable is nothing more than a name, and we allow for a countably
infinite number of names of variables: x, y, z, and so on.

M ::= x variable

| λx.M abstraction

|M M application

Figure 2.1: terms of the untyped λ-calculus

An abstraction is like a function (and often called a “function”) as it could be
applied in an application. A variable that has been abstracted by a λ-abstraction
(e.g., x in λx.M) is called bound, and otherwise it is said to be unbound. A
variable is said to be free in a term if it appears unbound in the term. A term
without free variables is said to be closed.

Example 2.1.1. In the term M = λx.x y, x is a bound variable and y is a free
variable. M is not a closed term.

Since λ-abstractions are like functions, they could be expected to behave sim-
ilarly to mathematical functions. Bound variables can be freely renamed; for
example λx.x and λy.y denote the same term, just as f(x) = x and f(y) = y are
the same function. This is called the α-equivalence of terms. We will always

16

consider terms up to α-equivalence, i.e., consider α-equivalent terms to be exactly
the same.

When an abstraction is applied to a term, we substitute the term to the bound
variables into the term, e.g. (λx.x z) y = y z. We can also evaluate a term
partially, just like when we evaluate mathematical functions at a certain point.
This process is called reduction.

First, we need to define the concept of substitution in the form of M [x := t],
which means to “substitute all occurences of x in M with t”. However, there might
be instances where M and t have common variables, and näıve substitution will
give unexpected results. Therefore, we must perform substitution in a capture-
avoiding manner, defined by the following rules (here, M , N and T are terms and
x, y variables):

x[x := M] = M
x[y := M] = x

(λx.M)[x := N] = λx.M
(λx.M)[y := N] = λx.(M [y := N]), if x 6= y and x is not free in N

(M N)[x := T] = (M [x := T]) (N [x := T])

Figure 2.2: capture-free substitution of terms

Now, we can finally define precisely reduction in the untyped λ-calculus.

Definition 2.1.2 (β-reduction). The (β-)reduction relation →β is the smallest
relation satisfying the following rules (see Figure 2.3).

Red-Beta

(λx.M)N →β M [x := N]

Red-Abs
M →β M

′

λx.M →β λx.M
′

Red-App-1
M →β M

′

M N →β M
′ N

Red-App-2
N →β N

′

M N →β M N ′

Figure 2.3: β-reduction for untyped λ-calculus

Definition 2.1.3 (multi-step reduction). The smallest multi-step closure of →β

relation is called the multi-step reduction relation and is denoted →∗β. In other
words, M →∗β N if there is a (finite) sequence S, T , ... of terms, such that
M →β S →β T →β ...→β N .

Definition 2.1.4 (β-equivalence). The smallest transitive, reflexive and symmet-
ric closure of →β is called the β-equivalence relation, or ≡β.

A term that cannot be further β-reduced is called β-normal, and if M →∗ N
where N is β-normal, N is called the β-normal form of M .

β-equivalence has the following important property, first proven by Church and
Rosser:

17

Theorem 2.1.1 (Church-Rosser). If M ≡β N , then there is a term T such that
M →∗ T and N →∗ T .

Proof. This is corollary 1.4.8 in [SU06]. Note that it is slightly different from the
original Church-Rosser theorem (which is theorem 1.4.7 in the same book), but
for practical purposes we will prefer this form of the Church-Rosser theorem.

The Church-Rosser property has the following consequences:

Corollary 2.1.2. If M ≡β N and N is β-normal, then M →∗ N .

Corollary 2.1.3. If both M and N are in β-normal form and M ≡β N , then
M = N .

However, here is one more reduction relation on the untyped λ-calculus, usually
denoted by the Greek letter η. This reduction stems from the observation that, e.g.,
in set-theoretic mathematics,x 7→ f(x) and f are considered identical. However,
this is not covered by β-reductions, as λx.M x does not β-reduce to M . η-reduction
is closely related to the notion of functional extentionality in mathematics, as we
shall see later.

η-reduction (→η) is defined by the rules in Figure 2.4. →∗η and ≡η are defined
analogously to →∗β and ≡β.

Eta
x is free in M

λx.M x→η M

Eta-Abs
M →η M

′

λx.M → λx.M ′

Eta-App-1
M →η M

′

M N →η M
′ N

Eta-App-2
N →η N

′

M N →η M N ′

Figure 2.4: η-reduction for the untyped λ-calculus

We say that M →βη N if M β- or η-reduces to N . We define the multi-step
βη-reduction →∗βη and βη-equivalence ≡βη analogously, and so do we the notion
of βη-normal form. βη-reduction retains many of the properties of β-reduction:
most notably, the Church-Rosser theorem and its consequences still hold with β
replaced by βη.

Particularly, we will often use the notion of βη-equivalence in this thesis; when
we write M ≡ N , it should be always understood as M ≡βη N unless other-
wise stated. → and →∗, however may refer to just β-reduction or βη-reduction,
depending on the context.

2.1.2 Simple types

Not all terms in untyped λ-calculus have normal forms. For example, the term
(λx.x x) (λx.x x) reduces to itself, and thus does not have a normal form. To
solve this problem, we introduce types to classify terms and define the valid
usages of terms. For example, only a function could be applied. The simply-
typed λ-calculus (STLC) is the simplest of type systems for λ-calculi; it is also
the simplest example of a type theory, or a logical theory of types and terms
(usually λ-calculus terms), which is the central topic of this thesis.

In STLC, we allow for the following types:

18

τ ::= 1 base type

| τ → τ function type

| τ × τ product type

Figure 2.5: types of STLC

We extend the untyped λ-calculus with four new terms, (M,N), fst(M), snd(M)
and tt, to accomodate the new constructions. The reduction rules for these con-
structions are as following (tt is normal and does not further reduce). Other
β-reduction rules remain the same, and η-reductions behave as expected.

Red-Pair-1
M →M ′

(M,N)→ (M ′, N)

Red-Pair-2
N → N ′

(M,N)→ (M,N ′)

Red-Fst-In
M →M ′

fst(M)→ fst(M ′)

Red-Fst

fst(M,N)→M

Red-Snd-In
M →M ′

snd(M)→ snd(M ′)

Red-Snd

snd(M,N)→ N

Figure 2.6: extra reduction rules for STLC

Hereafter, when we introduce new constructors like (−,−) and fst, we always
assume that reduction can occur “under” the constructor, analogous to Red-Abs
and Red-Pair-1.

Function types behave like functions, and product types behave like cartesian
products in set theory, or rather categorical products in category theory. The type
1 behaves similarly to the one-element set in set theory, or the terminal object in
category. Later, we will also define and prove these similarities formally.

In STLC, we consider only well-typed terms; terms that could not be typed
are not considered STLC terms. We write M : τ if the closed term M has the
type τ . Non-closed terms can also be typed, given that we know the type of all
free variables in the term. For this purpose, we introduce the notion of a (typing)
context, which is simply a mapping from variables to types. Then, under an
appropriate context Γ, any closed or open term in STLC can be given a type. We
write Γ `M : τ if M has type τ under the context Γ. Particularly, if M is closed,
we often write ` M : τ instead of just M : τ , to emphasize that M is closed, and
can be typed without an external context.

The typing relation is formally defined by the following rules (in Figure 2.7).
Note that the abstraction form λ has been slightly modified to include a type anno-
tation, i.e. information of the type of x1. The reduction rules remain unchanged.

1Strictly speaking, this isn’t necessary. Our presentation of STLC is sometimes called
“Church-style”. If we use unannotated λs, we run into the problem of well-typed and ill-typed
terms, so we try to avoid this presentation.

19

Typ-Var
Γ(x) = τ

Γ ` x : τ

Typ-TT

Γ ` tt : 1

Typ-Abs
Γ, x : τ `M : τ ′

Γ ` λ(x : τ).M : τ → τ ′

Typ-App
Γ `M : τ → τ ′ Γ ` N : τ

Γ `M N : τ ′

Typ-Pair
Γ `M : τ Γ ` N : τ ′

Γ ` (M,N) : τ × τ ′

Typ-Fst
Γ `M : τ × τ ′

Γ ` fst(M) : τ

Typ-Snd
Γ `M : τ × τ ′

Γ ` snd(M) : τ ′

Figure 2.7: typing rules for STLC

A proof of Γ ` M : τ is called a typing derivation, and usually proceed in the
style of natural deduction. We present an example below:

Example 2.1.5. The type of the term λ(x : τ × τ ′).fst(x) is (τ × τ ′)→ τ .

Proof. Natural deduction proof. See derivation (Figure 2.8).

Typ-Abs

Typ-Fst
x : τ × τ ′ ` x : τ × τ ′

x : τ × τ ′ ` fst(x) : τ

` λ(x : τ × τ ′).fst(x) : (τ × τ ′)→ τ

Figure 2.8: proof of Example 2.1.5

Additionally, the typing derivations of STLC satisfy three structural rules
(see Figure 2.9).

Weakening
Γ `M : τ

Γ;x : σ `M : τ

Contraction
Γ;x : σ; y : σ `M : τ

Γ;x : σ `M [y := x] : τ

Exchange
Γ;x : σ; y : ϕ; Σ `M : τ

Γ; y : ϕ;x : σ; Σ `M : τ

Figure 2.9: Structural rules for STLC derivations

All type theories in the rest of this thesis satisfy all three structural rules of
weakening, contraction and exchange, unless otherwise stated.

Having defined the notion of types, we would like to first ascertain that typing
is well-defined. More specifically, we would like to prove the following theorem:

Theorem 2.1.4 (uniqueness of typing). If Γ `M : τ and Γ `M : σ, then τ = σ.

20

To prove this theorem, we use a technique called structural induction, which
will be used throughout this thesis:

Proof. We perform (structural) induction on the structure of M .

• M = x. This is equivalent to showing that Γ defines a function on variables.
Assuming that Γ is not ill-formed (i.e. contain two entries of x), one can
perform (regular mathematical) induction on the size of Γ, and apply the
structural rules of weakening and exchange, to show this;

• M = λ(x : α).N . Necessarily, τ = α→ β and Γ;x : α ` N : β for some type
β. By the inductive hypothesis, we may assume that if Γ;x : α ` N : β′, then
necessarily β = β′. By the typing rule Typ-Abs, we know that if Γ `M : σ,
then σ = α → β′ for some β′, where Γ;x : α ` N : β′. However, by the IH,
we know that β = β′. Therefore τ = σ.

The induction for other cases proceed similarly.

At the beginning of this section, we have mentioned that untyped λ-calculus
has the problem that not all terms have a normal form. Introducing typing was
our proposed solution, and as we have now defined the theory of STLC, we can
prove that this is indeed a solution to the problem.

Theorem 2.1.5 ((strong) normalization of STLC). Every well-typed closed term
in STLC has a βη-normal form. In other words, if ` M : τ , then there is a
βη-normal term N such that M →∗ N .

Proof. See [SU06], section 4.4.

Moreover, the Church-Rosser property and all of its corollaries continue to hold
for the STLC, in both the β and βη cases.

The theory of simply typed λ-calculus is much more complex, although most
of the theory is out of the scope of this thesis. The interested reader is referred
to a text on λ-calculi, such as [SU06]. We will, however, prove one result that
is essential to the categorical theory of STLC, which we will develop in the next
section.

Theorem 2.1.6 (βη-equivalence respects typing). Equivalent terms have the same
type. In other words, if `M : τ and M ≡ N , then ` N : τ .

To prove this theorem, we first prove the following lemmas:

Lemma 2.1.7 (subject reduction). If `M : τ and M →β N , then ` N : τ .

Proof. Induction on the structure of the typing derivation Γ ` M : τ (where
Γ = {}).

• Typ-Var and Typ-TT. The derivation could not be of these forms because
neither a variable nor tt could further reduce.

• Typ-Abs. If the last rule applied is Typ-Abs, then M = λ(x : σ).S, and
τ = σ → δ. By induction principle, if S → S ′, then x : σ ` S ′ : δ. Since
the only possible reduction for an abstraction form is Red-Abs, we know
that necessarily N = λ(x : σ).S ′. Then by applying the rule Typ-Abs and
the induction principle, we know immediately that ` λ(x : σ).S ′ : σ → δ i.e.
` N : τ .

21

• Typ-App. If the last rule applied is Typ-App, then it must be the case that
M = S T , where ` S : σ → τ and ` T : σ. Here, there are three possible
reduction paths for M .

1. M reduces by the rule Red-App-1, i.e. N = S ′ T . By induction
principle, we know that if S → S ′, then ` S ′ : σ → τ . By the rule
Typ-App we know that ` S ′ T : τ i.e. ` N : τ .

2. M reduces by the rule Red-App-2. The proof is essentially the same
as the previous case.

3. M reduces by the rule Red-Beta. We know that necessarily S = λ(x :
σ).R, and N = R[x := T]. This is the interesting case, and we pose the
general case of this as the next lemma.

• Typ-Pair, Typ-Fst and Typ-Snd. The proof is essentially same as the
proof for Typ-Abs and the first two cases in Typ-App.

Lemma 2.1.8. If Γ;x : σ `M : τ and ` N : σ, then Γ `M [x := N] : τ .

Proof. Induction on the structure of M .

Corollary 2.1.9. If `M : τ and M →∗β N , then ` N : τ .

Proof. By the transitivity of →∗β and Lemma 2.1.7.

Corollary 2.1.10. If M ≡β N and `M : τ , then ` N : τ .

Proof. If M ≡β N , then by the Church-Rosser property of STLC, there is a term
T such that M →∗β T and N →∗β T , and by Corollary 2.1.9, ` T : τ . Suppose
` N : τ ′, then ` T : τ ′. By the uniqueness of typing, τ = τ ′, so ` N : τ .

We have essentially proven Theorem 2.1.6 for β-reductions. We will follow a
similar procedure for the η case.

Lemma 2.1.11. If `M : τ and M →η N , then ` N : τ .

Proof. By induction on the typing judgment Γ ` M : τ ; the only non-trivial case
is Typ-Abs combined with Eta. Here, M = λ(x : σ).T x, and τ = σ → δ. By
the rule Typ-Abs, we know that Γ;x : σ ` T x : δ. By the rule Typ-App, we
have Γ;x : σ ` T : σ → δ. Since x is free in T , by the contraction rule we have
Γ ` T : σ → δ, i.e., Γ ` T : τ .

Corollary 2.1.12. If M ≡η N and `M : τ , then ` N : τ .

Proof. Identical to the proof for Corollary 2.1.10.

Proof of Theorem 2.1.4. Since ≡βη is just the union of ≡β and ≡η, this follows
by Corollary 2.1.10 and Corollary 2.1.12.

22

2.1.3 The Curry-Howard correspondence

The simply typed λ-calculus is not only a computational system2 but also a proof
system. There are some evident similarities between STLC and natural deduction
based proof systems. Consider the following example of a natural deduction proof
of ϕ ∧ ψ ⇒ ϕ in intuitionistic propositional logic3 (hereafter also constructive
propositional logic):

⇒-Intro

∧-ElimL
ϕ ∧ ψ ` ϕ ∧ ψ
ϕ ∧ ψ ` ϕ
` ϕ ∧ ψ ⇒ ϕ

Figure 2.10: Natural deduction proof of ϕ ∧ ψ ⇒ ϕ

This derivation is basically identical to the typing derivation for λ(x : τ ×
τ ′).fst(x). We may think of a type of STLC as a proposition in intuitionistic
propositional logic with ∧ and > (IPL), and a typing derivation as a natural
deduction proof of the proposition. The terms in STLC, thus, can be thought
of proofs of propositions. This identification is called the proposition-as-types
interpretation of logic, or the Curry-Howard correspondence. We identify
STLC types and IPL propositions according to the following table:

STLC type IPL proposition
→ ⇒
× ∧
1 >

The difference between STLC types and IPL propositions, thus, can be consid-
ered purely notational. In the rest of this thesis, we will not distinguish between
STLC types and IPL propositions. The Curry-Howard correspondence for STLC
can be formalized as the following theorem:

Theorem 2.1.13 (Curry-Howard correspondence). Let Γ be a context in STLC,
∆ a context (or set of premises) in IPL, M a term in STLC, and ϕ a type in
STLC (or equivalently its interpretation in IPL). Then:

• if Γ `M : ϕ, then cod(Γ) ` ϕ;

• if ∆ ` ϕ, then there is a term M such that Γ `M : ϕ, where cod(Γ) = ∆.

Proof. By structural induction on typing derivations. See also Chapter 5 of [SU06]
for details.

From Theorem 2.1.13, one can see that for logicians (particularly categorical
logicians), λ-calculus could be thought as “another way to do logic”. The difference

2to be precise, it is a term rewriting system (see [BN98] for a precise definition).
3Intuitionistic propositional logic is propositional logic without double-negation elimination

or any laws equivalent to it, including (but not limited to) the law of excluded middle.

23

between STLC and IPL can be considered mainly differences in style, but an
important difference is that in λ-calculi, one does logic in a proof-relevant way.
Proofs — or terms — are a primary notion in λ-calculi, as opposed to proofs
in logical calculi which are secondary in that they are not part of the typical
presentation of logical calculi.

More complex type theories also have Curry-Howard correspondences, as we
shall see in the following sections. It is important to note, however, that all
logics we consider in this thesis are intuitionistic/constructive (that is, they do
not validate double-negation elimination ¬¬ϕ⇒ ϕ or the law of excluded middle
ϕ∨¬ϕ), although we might work in a classical (i.e., non-constructive) metatheory.
This can be explained by the fact that the use of double-negation elimination or the
law of excluded middle necessarily gives non-constructive proofs, and cannot be
expressed as terms in the λ-calculus because non-constructive proofs, by definition,
could not be computed4.

We do not introduce the proof theory of propositional, first-order and/or higher-
order logical calculi, as this is out of the focus of this thesis. Whenever we use
results relating to these logical calculi, we will cite the appropriate references.

2.2 STLC and cartesian closed categories

2.2.1 Syntactic categories

Every λ-calculus gives rise to a category called its syntactic category, since the
category is based on the syntax of λ-calculus:

Definition 2.2.1 (syntactic category (Section 1.11, [LS86])). Let L be a type
theory, i.e. theory of a certain typed λ-calculus. The following data form a category
Syn(L), called the syntactic category of L:

• the objects of Syn(L) are the types of L;

• the morphisms τ → σ are sequents of the form x : τ ` M(x) : σ, up to
αβη-equivalence in M(x);

• the identity morphism at each object τ is the sequent x : τ ` x : τ ;

• the composition of morphisms is given by the composition of λ-terms. Given
two sequents i.e. morphisms x : τ ` M(x) : σ and y : σ ` N(y) : δ, their
composition is x : τ ` N(M(x)).

Frequently, we will also identify the sequent x : τ ` M(x) : σ with the λ-term
λ(x : τ).M(x); the two styles are essentially equivalent. Hereafter, we sometimes
drop the annotation τ on x, if the annotation can be easily inferred. It is evident

4In this thesis, by “computation”, we mean pure computation, which means that we compute
using only mathematical functions that depend only on the value of their arguments. Some non-
constructive proofs can actually be encoded in the λ-calculus if we allow impure computation,
i.e. when the value of computation depends not only on the inputs. A reader familiar with
programming will realize that this is actually closer to the usual conception of a program, which
will almost inevitably interact with the external environment by e.g. reading from a file, taking
input, etc.

24

that the given data form a category. We sometimes write [τ] if we want to empha-
size that we are working in the syntactic category, and considering τ as an object
of this category.

The subject of the previous section is the simply typed λ-calculus, and naturally
one wants to consider the Syn(λ→), where λ→ is the theory of STLC (with 1 and
×). It turns out that Syn(λ→) is a quite nice category; namely, it is cartesian
closed.

Theorem 2.2.1. The syntactic category of STLC, Syn(λ→), is cartesian closed.

Proof (Section 1.11, [LS86]). There are three requirements for a category to be a
CCC: a terminal object, all binary products, and all exponentials. We construct
them in Syn(λ→) as following:

• the terminal object is [1], and the unique map into the terminal object is
given by x : τ ` tt : 1;

• the binary product [τ] × [σ] is [τ × σ], with the two canonical projections
given by p : τ × σ ` fst(p) and p : τ × σ ` snd(p) respectively;

• the exponential object [σ][τ] is [τ → σ];

• the evaluation morphism [σ][τ] × τ → σ is given by (f, x) : τ → σ × τ ` f x.

1 is indeed terminal since tt is its only constructor, and the rules for fst and
snd guarantee that the type-theoretic product is indeed the categorical product.
It is, however, tedious to directly verify the universal property of exponentials; we
can instead use the equational definition given in Lemma 1.3.1.

To simplify calculations, we identify sequents with λ-terms (this is no more
than a notational preference). The evaluation morphism ev is identified with the
term λz.fst(z) snd(z), and for any f : δ× τ → σ, we define the transpose f̃ : δ×στ
as the term λz.λx.f (z, x). Both equations can be proven by βη-normalizing the
left hand side of the equation.

2.2.2 Interpreting STLC in CCCs

We have just proven that STLC naturally gives rise to a CCC. Now, we will go a
step further and show that STLC could be interpreted in any CCC. However, we
first need to define precisely the notion of “interpretation”.

In the rest of this thesis, when we use STLC, we will allow a number of base
types, and a number of uninterpreted constants belonging to each type. These
constants are terms, but there are no reduction rules for them (hence the name
“constants”); the base types can form products and functions like other types, but
there are no new rules added to the calculus.

Definition 2.2.2 (model of a type theory). A modelM of a type theory L consists
of the following data (see, e.g., [Hu20]):

• a collection called the domain of the model; here, we consider only the case
where the domain forms a category C;

• an assignment J−K from types of L to the objects of C;

25

• an assignment J−K from contexts, satisfying J·K = 1 and JΓ;x : τK = JΓK×JτK;

• an assignment JΓ `M : τK for every valid typing judgment from the terms of
type τ to morphisms JΓK→ JτK. Sometimes, when Γ and τ are understood,
we also write JMK.

A model is also called a denotational semantics, particularly in computer sci-
ence. Here, we stick to the term “model”, or sometimes “semantics”.

Example 2.2.3 (set-theoretic model of STLC). The construction is primarily
known in mathematical folklore, but a written description can be found in the
Chapter 10 of [Sel13]. Take the category Set. We can show that Set is a model
of λ→. The types are interpreted as follows:

J1K = {∗}
Jσ → τK = JσK→ JτK
Jσ × τK = JσK× JτK.

Note the abuse of notation here → means function type on the left-hand side,
and function space (the set of all functions) on the right-hand side. Similarly,
× means product type on the left-hand side, and the cartesian product on the
right-hand side.

Next, we interpret the terms of STLC. We first consider the basic case of a
variable; for the sake of simplicity, consider the case where Γ = x1 : τ1; ...;xn : τn,
and the judgment x1 : τ1; ...;xn : τn ` xi : τi. Here, JΓK = Jτ1K × ... × JτnK, and
naturally we define JxiK = πi the projection function.

The case of λ-abstraction is similarly simple. For JΓ ` λ(x : σ).M : σ → τK,
we consider JΓ;x : σ ` M : τK = f : JΓK × JσK → JτK. Naturally, we define
JΓ ` λ(x : σ).M : σ → τK = f̃ : JΓK→ (JσK→ JτK).

The other cases are interpreted as follows:

JΓ `M N : τK = ev ◦ (JΓ `M : σ → τK, JΓ ` N : σK)
JΓ ` (M,N) : σ × τK = (JΓ `M : σK, JΓ ` N : τK)

JΓ ` fst(M) : σK = π1 ◦ JΓ `M : σ × τK
JΓ ` snd(M) : τK = π2 ◦ JΓ `M : σ × τK

JΓ ` tt : 1K = − 7→ ∗.

It should be noted that the construction of a set-theoretic model of STLC
above uses only standard constructions in CCCs, namely products and functions
(i.e. exponentials). Thus, even though the construction is for Set, the same
construction can be used for any CCC. This proves the following main theorem:

Theorem 2.2.2. Any CCC is a model of STLC.

Proof. Types are interpreted as follows:

J1K = 1

Jσ → τK = JτKJσK

Jσ × τK = JσK× JτK.

26

Interpretation of terms are the same as in Example 2.2.3, replacing function
spaces with exponentials and cartesian products with categorical products. tt is
interpreted as the unique morphism into 1.

This construction is well-known in the folklore among the researchers of λ-
calculi and categorical logic, but without explicit written references.

However, in the previous construction, we were considering terms, not equiv-
alence classes of terms, i.e., terms up to βη-equivalence. We need to make sure
that our construction respects the equivalence of terms.

Definition 2.2.4 (soundness). A model M for L is sound if for any M ≡ N : τ ,
we have JMK = JNK.

Theorem 2.2.3. The CCC model of STLC is sound.

Lemma 2.2.4. If JΓ;x : σ ` M : τK = f : JΓK× JσK→ JτK and JΓ ` N : σK = g :
JΓK→ JσK, then JΓ `M [x := N] : τK = f ◦ (id, g) : JΓK→ JτK.

Proof. Induction on the structure of M .

Proof of Theorem 2.2.3. Induction on the structure of the derivation Γ ` M : τ .
We need only to consider the case where M →βη N ; the other cases follow by
transitivity and Church-Rosser.

Here we prove only one case (where M →βη N by Red-Beta):

JΓ ` (λ(x : σ).S) T : τK = ev ◦ (˜JΓ;x : σ ` S : τK, JΓ ` T : σK)

= ev ◦ (˜JΓ;x : σ ` S : τK, id) ◦ (id, JΓ ` T : σK)
= JΓ;x : σ ` S : τK ◦ (id, JΓ ` T : σK)
= JΓ ` S[x := T] : τK.

Other cases can be proven similarly.

Corollary 2.2.5 (functoriality of J−K). Let C be any CCC. Then J−K defines a
functor Syn(λ→)→ C described as follows:

• any object i.e. type τ in Syn(λ→) is mapped to the object JτK : C;

• any sequent x : σ ` M(x) : τ is mapped to the morphism Jx : σ ` M(x) :
τK : JσK→ JτK.

Proof. Clearly Jx : σ ` x : σK = id (the product of one object is itself, and the
canonical projection is just the identity morphism).

We need to show that J−K respects composition of morphisms. Given two
morphisms x : σ ` M(x) : τ and y : τ ` N(y) : δ, the composition of them is
x : σ ` N(M(x)) : δ. To show that Jx : σ ` N(M(x)) : δK = Jy : τ ` N(y) :
δK ◦ Jx : σ `M(x) : τK, we can proceed by a simple induction on M and N .

The familiar Heyting algebra semantics of STLC is just a special case of the
interpretation of STLC by CCCs.

Example 2.2.5 (Heyting algebra semantics of STLC). A Heyting algebra H is a
sound model of STLC.

Proof. A Heyting algebra is a CCC if considered as a category, so any Heyting
algebra is a sound model of STLC.

27

2.2.3 The internal language of a category

In the previous part, we have shown how to construct a CCC from STLC. We may
naturally ask if, in the reverse direction, we could generate a language based on
a CCC. This is in fact possible, and the generated language is called the internal
language of a CCC. In general, any category with enough structure has an internal
language.

We define the internal language of a CCC (the definition is adapted from Sec-
tion 5, Chapter 6 of [MM92]). Let C be a CCC, then its internal language L(C) is
defined as following:

• the types are the objects of C. Here, we will not distinguish between objects
X of C and types X of L(C);

• each variable x : X is a term of type X, interpreted as the identity morphism
idX ;

• a term φ(u, v, ...) of type X, containing free variables u : U , v : V , etc., will
be interpreted as a morphism U × V × ...→ X5;

• for two terms M : X and N : Y , interpreted by the arrows f : U → X and
g : V → Y respectively, there is a term (M,N) which is the product of M
and N , interpreted by the categorical product (f, g);

• for a term M : X and f(x) : Y , interepreted by the arrows σ : U → X and
f : X → Y respectively, there is a term f ◦M , interpreted by the categorical
composite f ◦ σ;

• for a term f : X → Y and M : X, interpreted by the arrows θ : U → Y X

and σ : V → X, there is a term f(M) : Y interpreted by evaluation:

U × V (θ,σ)−−−→ Y X ×X ev−−→ Y ;

• for a variable x : X and a term M interpreted by the morphism σ : X×U →
Y , there is a term λx.M : X → Y (or perhaps x 7→ M), interpreted by the
transpose of σ, σ̃ : U → Y X .

One can see that taking the internal language of a CCC is essentially the inverse
operation of taking the semantics of lambda calculus in the such CCC. We have
the following result:

Proposition 2.2.6. The internal language of Syn(λ→) is λ→.

Proof. By verifying each construction.

Essentially, the internal language of a CCC is STLC. Therefore, we often say,
informally, that STLC is “equivalent” to (the category of) CCCs.

5if a term is closed, then of course the morphism will come from the nullary product, i.e., 1.

28

Chapter 3

Dependent type theory and
presheaf semantics

3.1 Martin-Löf type theory

The simply-typed λ-calculus corresponds to (intuitionistic) propositional logic,
which is a simple logical system. However, IPL is far from sufficient for doing
mathematics. For example, it lacks quantifiers (∀ and ∃) and equalities, making
it impossible for complex mathematics to be developed. In fact, in IPL it is not
even possible to develop Peano arithmetic, so a stronger system is obligatory for
substantial mathematics.

Martin-Löf proposed a system [Mar72], nowadays often called Martin-Löf type
theory (or intuitionistic/constructive type theory), that serves as a constructive
foundation for first order and higher-order reasoning and computation. Here, we
present Martin-Löf’s type theory as an example of dependent type theory,
or a type theory where types could depend on terms, allowing quantifiers to be
encoded.

We begin with the syntax of MLTT. In MLTT, there is no syntactic distinction
between terms and types; types are just special terms. We allow all terms and
types of STLC in MLTT, but we add two more type-terms (see Figure 3.1). λ and
(−,−) are the introduction forms for Π and Σ, respectively, and → and × could
be thought of as special cases of Π and Σ, in which M does not actually contain
x. In the rest of this thesis, we use the notation → and × when appropriate, but
do not treat them separately.

M ::= ... all terms/types in STLC

| Π(x : M).M Π-/dependent function types

| Σ(x : M).M Σ-/dependent product types

| U universe of types

Figure 3.1: terms of MLTT

Rather confusingly, in the literature, Π and Σ are often called “dependent
product” and “dependent sum” types, respectively. However, we believe such

29

naming is not only perplexing, but also distracting as they do not conform to the
actual behavior of the types. Therefore, we will never use this alternate set of
notations in our thesis.

Next, we define the typing rules for MLTT. The typing rules of MLTT are
significantly more involved than those for STLC, for various reasons. There is no
syntactic-level distinction between types and terms, but not all terms are semanti-
cally types. Therefore, we first need a judgment Σ ` τ type, meaning that “τ is a
type”. Furthermore, we need that all contexts are well-formed, in that all contexts
indeed map variables to types; we write Γ ctx for the judgment “Γ is a well-formed
context”. The rules of type and context well-formedness is defined in Figure 3.2.

Hereafter, we will generally use the convention that an upper case denotes a
type, and a lower case letter denotes a term that does not form a type.

Wf-Var
Γ ctx Γ(x) = τ Γ ` τ type

Γ ` x type

Wf-Π
Γ ` A type Γ;x : A ` B type

Γ ` Π(x : A).B type

Wf-Σ
Γ ` A type Γ;x : A ` B type

Γ ` Σ(x : A).B type

Wf-1
Γ ctx

` 1 type

Wf-Empty

` {} ctx

Wf-Ctx
x1 : A1; ...;xn−1 : An−1 ` An type

{x1 : A1; ...;xn : An} ctx

Figure 3.2: type and context well-formedness for MLTT

Then, we can define the typing rules for MLTT (see Figure 3.3). We follow
mainly Appendix A.2 of [Uni13] in presenting the typing rules for MLTT.

Since in MLTT, types may consist of variables and/or terms, we must have a
systematic way of determining if two types are the same. If two types are “the
same”, then they may be converted seamlessly. We call this relation definitional
equality/equivalence (or judgmental equality, or intensional equivalence/equal-
ity), meaning that the two terms are defined to be equivalent. This is different
from the βη-equivalence, or observational equality, that we have defined in the
previous chapter.

Definitional equality, unlike observational equality, is a typed relation, meaning
that the equality of two terms is associated with a specific type. We write Γ ` a ≡
b : A if a and b are definitionally equal, both having type A. Definitional equality
is defined by the following rules (Figure 3.4, again, following mainly Appendix A.2
of [Uni13]). The rule Typ-Conv explains how definitional equality is essential to
type checking: since types can contain arbitrary terms, it is sometimes necessary
to convert across equivalences to properly give types to terms.

We also assume that definitional equality is a congruence, meaning that con-
structors preserve equality. For example, if Γ ` b ≡ b′ : B, then we also have
Γ ` λ(x : A).b ≡ λ(x : A).b′ : Π(x : A).B, et cetera. We do not write down
explicitly these rules, because there are numerous of them. However, whenever we

30

Typ-Type
Γ ` A type

Γ ` A : U

Typ-Var
Γ(x) = A

Γ ` x : A

Typ-Abs
Γ ` A type Γ;x : A ` b : B

Γ ` λ(x : A).b : Π(x : A).B

Typ-App
Γ ` f : Π(x : A).B Γ ` a : A

Γ ` f a : B[x := N]

Typ-Pair
Γ; a : A ` B type Γ ` a : A Γ ` b : B[x := a]

Γ ` (a, b) : Σ(x : A).B

Typ-Fst
Γ ` p : Σ(x : A).B

Γ ` fst(p) : A

Typ-Snd
Γ ` p : Σ(x : A).B

Γ ` snd(p) : B[x := fst(p)]

Typ-TT

Γ ` tt : 1

Figure 3.3: typing for MLTT

introduce a new constructor (like λ and (−,−)), we always implcitly assume that
it has the property of respecting definitional equality.

Eq-Refl

Γ ` a : A

Γ ` a ≡ b : A

Eq-Sym

Γ ` a ≡ b : A

Γ ` b ≡ a : A

Eq-Trans

Γ ` a ≡ b : A Γ ` b ≡ c : A

Γ ` a ≡ c : A

Ty-Conv
Γ ` a : A Γ ` A ≡ B : U

Γ ` a : B

Eq-Conv

Γ ` a ≡ b : AΓ ` A ≡ B : U
Γ ` a ≡ b : B

Eq-Beta

Γ;x : A ` b : B Γ ` a : A

Γ ` (λ(x : A).b) a ≡ b[x := a] : B[x := a]

Eq-Fst

Γ; a : A ` B type Γ ` a : A Γ ` b : B[x := a]

Γ ` fst(a, b) ≡ a : A

Eq-Snd

Γ; a : A ` B type Γ ` a : A Γ ` b : B[x := a]

Γ ` snd(a, b) ≡ b : B[x := a]

Figure 3.4: Definitional equality for MLTT

The definition of reduction for MLTT is essentially the same as that of un-
typed λ-calculus and STLC, and so is the definition of observational, i.e., βη-,
equivalence. The proof of strong normalization and of Church-Rosser for MLTT

31

is notoriously complicated, but we should note here that MLTT is a strongly nor-
malizing system.

It is easy to see that if two terms are definitionally equal, then they are nec-
essarily observationally equal. However, two terms that are observationally equal
need not be definitionally equal. We will see the distinction between the two
concepts in the following sections.

3.1.1 Curry-Howard correspondence for MLTT

Just like STLC, MLTT also corresponds to a logical calculus. As we have men-
tioned in the beginning of the section, MLTT corresponds to first-order and higher-
order logic. The formalization we currently have allows quantification over terms
which are not types, and corresponds to constructive first-order/predicate logic.
The Curry-Howard correspondence for MLTT is given by the following table:

MLTT type FOL proposition
→ ⇒

Π(x : A).B ∀(x : A), B
Σ(x : A), B ∃(x : A), B

1 >

One can prove a “correspondence” theorem similar to Theorem 2.1.13 for
MLTT, using a more complicated structural induction proof.

Sometimes, in MLTT, we also use the notation ∀ and ∃ for Π and Σ, re-
spectively, when we want to emphasize the fact that a type represents a logical
proposition.

3.1.2 Universes

Now, we could no longer hide the fact that the formulation of MLTT that we have
just described is in fact slightly flawed. Most notably, we did not allow forming
types Π(x : A).B and Σ(x : A).B where x is in fact a type, since U is not a
“proper” type in its own right.

Naturally, we might ask why not simply add the following rule and make U a
type in its own right:

Wf-Univ

Γ ` U type

which has the consequence Γ ` U : U .
However, this is in fact very dangerous, as Girard has shown in [Gir72], since

it allows a term of any type to be constructed, which is equivalent to being able
to prove any proposition, making the type theory inconsistent as a logic. This is
analogous to the well-known Russell’s paradox in set theory, which states that non-
well-founded sets (and thus sets that contain themselves) leads to inconsistency.

But it does not mean that we are out of luck. There is a safe alternative: allow
a countably infinite hierarchy of universes, indexed by natural numbers i = 0, 1, ...,
by introducing either set of rules given below (Figure 3.5 or Figure 3.6). Moreover,
all occurences of U in previously introduced rules are to be replaced by Ui, and

32

A type to be replaced by A typei, meaning that “A is a type at universe level i”.
When we are not concerned with the particular universe level, we sometimes drop
the level index.

We call the former style (Figure 3.5) universes à la Russell (or cumulative
universes) and the later (Figure 3.6) universes à la Tarski. In the latter style,
there are two operators on universes and types, the quoting operator p−q and the
interpretation (unquoting) operator El(−), which are inverses of each other.

One can see that the two styles are essentially equivalent. Universes à la Russell,
however, are much simpler, so there is the natural question of why introducing
universes à la Tarski at all; however, later we will see cumulativity in à la Russell
universes are quite difficult to model, and that à la Tarski universes correspond
better to models of MLTT, so we will prefer to use universes à la Tarski when
working with models of type theory. However, we will often use the à la Russell
style merely as a shorthand; one can recover the à la Tarski style by adding quoting
and unquoting operators as appropriate.

Wf-Univ

Γ ` Ui typei+1

Typ-Univ
Γ ` A typei
Γ ` A : Ui

Typ-Cumul
Γ ` A : Ui

Γ ` A : Ui+1

Figure 3.5: Universes à la Russell

Wf-Univ

Γ ` Ui typei+1

Typ-Univ
Γ ` A typei
Γ ` pAq : Ui

Typ-Interp
Γ ` A : Ui

Γ ` El(A) typei

Figure 3.6: Universes à la Tarski

With universes, we can define type-valued functions, i.e., terms with type Π(x :
A).Ui. We also call such functions type families.

3.1.3 The identity type

In MLTT, sometimes we also include a type a =A b, called the identity type.
This type encodes the concept that two terms are (observationally) equal, and is
different from the definitional concept of equality, which is only meta-theoretic
and is not a type. We call this notion of equality propositional equality, as it
corresponds to the equality proposition a = b in predicate logic.

For each term a : A, there is a term refla : a =A a. This is the only way
to construct a term of type a =A b. For each type a =A b, there is a term JA,
called the eliminator of a =A b, which we define below. The typing, reduction and
equivalence rules for the identity type are given below, in Figure 3.7. The rule by
which JA reduces is also called rule J or axiom J ; the exotic naming is due to
Martin-Löf [Mar72].

33

Wf-=A

Γ ` A type Γ ` a : A Γ ` b : A

Γ ` a =A b type

Typ-Refl
Γ ` A type Γ ` a : A

Γ ` refla : a =A a

Typ-J
Γ;x, y : A; p : x =A y ` C type Γ; z : A ` C[x := z, y := z, p := reflz]

Γ ` a : A Γ ` b : A Γ ` p′ : a =A b

Γ ` JA(x.y.p.C, z.c, a, b, p′) ` C[x := a, y := b, p := p′]

Red-J

JA(x.y.p.C, z.c, a, b, refla)→ c[z := a]

Eq-J

Γ;x, y : A; p : x =A y ` C type
Γ; z : A ` C[x := z, y := z, p := reflz] Γ ` a : A

Γ ` JA(x.y.p.C, z.c, a, a, refla) ≡ c[z := a] : C[x := a, y := a, p := refla]

Figure 3.7: Formation, typing, reduction and equality rules for the identity type
a =A b

It might not be obvious what role JA serves. We can illustrate the role of JA by
constructing from each p : x =A y a term transportP (p,−) : P (x) → P (y), where
P : A → U is a type family over A. This means we can transport a term/proof
along an equality, to obtain a new proof “for free”. In other words, it manifests
Leibniz’s principle of “indiscernibility of identicals”: if x has the property P and
x = y, then y must have also have the property P .

3.2 Presheaf semantics for MLTT

Just like that STLC is closely related to CCCs, MLTTs are also related to a class of
categories. Here, we will focus on the presheaf semantics of MLTT, giving MLTT a
model in a particular kind of topos, or a topos of presheaves over a small category.

3.2.1 Categories with families

Before formally introducing the presheaf model, we introduce categories with
families (CwFs), which are a type of categories closely related to the syntax of
MLTT. CwFs can be thought of as a family of models for MLTT, unifying several
interesting models of MLTT. Using CwFs as a framework for the semantics of
type theory was first proposed in [Dyb96], but here we follow the presentation
in [CCD20].

Here, Fam is the category of family of sets. Its elements are families {Ux}x∈X
of sets, and a morphism {Ux}x∈X → {Vy}y∈Y consists of a reindexing function
f : X → Y , and a family of functions {gx}x∈X , gx : Ux → Vf(x). Equivalently,
Fam is just the arrow category/morphism category Mor(Set) of Set.

34

Definition 3.2.1 (category with families (CwF)). A category with families C
consists of the following data:

• a category C (by abuse of notation), often called the “category of contexts”,
with a terminal object. We use the capital Greek letters Γ, ∆, etc., to range
over the objects of C, and lower-case Greek letters σ, τ , etc., to range over
the morphisms of C;

• a Fam-valued presheaf T : Cop → Fam. Particularly, we define two operators
Ty and Tm as follows: we write Ty(Γ) = X if T (Γ) = {Ux}x∈X , and for
A ∈ X = Ty(Γ), we write Tm(U ;A) = UA. The two roughly corresponds to
the “types in context Γ” and the “terms of type A, interpreted under context
Γ”, hence the notation.

For a morphism γ : ∆→ Γ, we have a map of families T (γ) : Tm(Γ, A)A∈Ty(Γ) →
Tm(∆, B)B∈Ty(∆), which consists of a function −[γ] : Ty(Γ) → Ty(∆), and
for each A ∈ Ty(Γ) a function −[γ] : Tm(Γ;A) → Tm(∆, A[γ]). They are
called “substitution of types” and “substitution of terms”, respectively;

• a comprehension operation, assigning to each Γ : C and type A ∈ Ty(Γ) a
context Γ.A : C, a projection:

p(Γ;A) : Γ.A→ Γ

and a term (in the CwF sense):

q(Γ;A) ∈ Tm(Γ.A;A[p(Γ;A)])

satisfying the following universal property: for any γ : ∆ → Γ and all a ∈
Tm(∆, A[γ]), there is a unique (γ; a) : ∆→ Γ.A such that p(Γ;A) ◦ (γ, a) =
γ, and q(Γ;A)[(γ, a)] = a.

Particularly, there is a morphism −[a] = −[(id, a)] : Γ → Γ.A on types and
terms.

Often, when there is no risk of confusion, we drop (Γ;A) and write just p
and q.

Alternatively, the definition of a CwF can be given with Ty and Tm as primi-
tives (see Section 3.1 of [Hof97]). One can see that the definition of a CwF is rather
syntactical, following closely the syntax of MLTT. As one may expect, JΓK = Γ
(again, by a abuse of notation) and particularly J·K = 1 (the terminal object of
C. Moreover, JΓ ` A typeK ∈ Ty(Γ), and JΓ ` a : AK ∈ Tm(Γ;A), i.e. Ty(Γ) and
Tm(Γ;A) are the collections of types A and terms a such that Γ ` A typei and
Γ ` a : A, respectively. Substitution on terms and substitution on types in CwFs
interpret substitutions on terms and types, respectively.

One can define CwFs by giving C, Ty(Γ) and Tm(Γ;A). For example, a set-
theoretic model of MLTT can be constructed by taking C = Set.

Example 3.2.2 (set-theoretic model of MLTT ([Hof97], [Hub16])). The set-theoretical
model is simply the CwF model with C = Set. One could set Ty(Γ) = {σγ} to be
a family of sets indexed by γ ∈ Γ, and Tm(Γ;A) an element aγ ∈ {σγ}. Context
extensions are defined as:

Γ.A = {(γ, a) | γ ∈ Γ, a ∈ Aγ}

with p(γ, a) = a and q(γ, a) = a.

35

Furthermore, CwFs, with some extra axioms, are expressive enough to interpret
dependent functions and dependent products (Π and Σ), but here we skip the
more generic description, and leave the description to the following part, where we
discuss the presheaf model of MLTT as a special case of the CwF model.

3.2.2 The presheaf model

Essentially, the presheaf model is a special case of the CwF model where Γ is a
presheaf category. We work out this special case in full.

Let C be a category, usually small. A presheaf over C, one recalls, is the category
PSh(C) = [Cop; Set]. Then, one can construct a model of MLTT in PSh(C). This
was first proposed by Hofmann in [Hof97] using the language of CwFs. Here, we
follow the exposition in [Hub16].

A context can be interpreted by a presheaf Γ : Cop → Set. What are the
morphisms between presheaves? Naturally, one might think of “morphisms of
contexts”, which are called substitutions, or context maps. We make an interlude
here to define substitutions of substitutions of contexts:

Definition 3.2.3 (context substitution/morphism). Let Γ = x1 : A1; ..., xn : An
and ∆ = y1 : B1; ...; ym : Bm be contexts. Then a substitution ρ : Γ → ∆
is a sequence of substitutions y1 := a1(x1, ..., xn), .., ym := am(x1, ..., xn), where
a1, ..., an are terms, such that Γ ` ai : Bi for each ai.

Particularly, for any Γ ` A type, one can apply a context substitution σ : ∆→
Γ to A, obtaining a type Aσ by applying the sequence of substitutions in σ. A
similar operation can be defined on terms in Γ.

Now, one can say that each context Γ is interepreted by a presheaf Γ, and
each substitution σ : Γ → ∆ is interpreted by a morphism of presheaves/natural
transformation σ : Γ → ∆ (again, an abuse of notation). By definition, for
each I : C, there is a set Γ(I), and for f : I → J in C, there is a function
Γf : Γ(I)→ Γ(J), ρ 7→ ρf . Often, an element of Γ(I) is denoted as ρ ∈ Γ(J). σ is
a natural transformation, so for each I : C there is a component σI of σ; however,
we will often drop the subscript. For example, (σI(ρ))f = σj(ρf) by definition of
a natural transformation, but we write simply (σρ)f = σ(ρf).

Next, one defines the interpretation of types A, or precisely the judgments
Γ ` A type, as types might not make sense without a particular context because
they may contain free variables. For each I : C and ρ ∈ Γ(I), one requires a set
Aρ, and for each f : J → I, a function Aρ → A(ρf), often written as a 7→ af ,
such that aid = a and (af)g = a(fg) for g : K → J . Substitutions ∆ ` Aσ type
with σ : ∆→ Γ are given by (Aσ)ρ = A(σρ) for ρ ∈ ∆(I), along with the induced
map

(Aσ)ρ = A(σρ)→ A((σρ)f) = (Aσ)(ρf).

More abstractly, one can define Ty(Γ) in terms of the Grothendieck con-
struction on Γ. The eponymous construction is defined in general by Grothendieck,
in [Gro71] 1, but here we define only a special case due to Yoneda and Mac Lane,
following I.6 of [MM92].

1For readers familiar with K-theory, this is unrelated to the Grothendieck construction in
K-theory, which constructs a group from an abelian semigroup.

36

Definition 3.2.4 (Grothendieck construction/category of elements of a presheaf).
Let F : Cop → Set be a presheaf on C. The Grothendieck construction on F , or
the category of elements of F , often denoted by

∫
C F or just

∫
F , is defined by the

following data:

• the objects are all pairs (X, p) where X : C and p ∈ F (X);

• the morphisms (X, p) → (Y, q) are the morphisms f : X → Y such that
p = qf ; the composition of these morphisms are given by the composition of
morphisms in the underlying category.

We write πF :
∫
C F → C for the projection functor (X, p) 7→ X. The following

diagrams commute:∫
C F p q ∈ F (Y)

C Set X Y.

πF

F

f

An intuitive way to understand the Grothendieck construction is that “the
Grothendieck construction takes structured, boxed-up data and flattens it by
throwing it all into one big space. The projection functor is then tasked with
remembering which box each datum originally came from” [Spi14].

Note that the Grothendieck construction yields a functor
∫
C : PSh(C)→ Cat

from the category of presheaves on C to the category of categories. A morphism of
presheaves/natural transformation τ : F → G induces a functor

∫
C τ :

∫
C F →

∫
C G

in the way one would expect.
There is an alternative definition of Ty(Γ) as Ty(Γ) = PSh(

∫
C Γ), i.e., a type

is interpreted by a presheaf on the category of elements of Γ. In other words, A is
a presheaf

∫
C Γop → Set, so sometimes we also write A(I, ρ) instead of Aρ, if it is

intended to emphasize I. Given a context substitution interpreted as a morphism
σ : ∆→ Γ, the application of the substitution σ on a type Γ ` A type, or A[σ], is
simply interpreted as precomposing JAK with

∫
C σ :

∫
C∆→

∫
C Γ.

Finally, one defines the interpretation of terms (i.e., their typing judgments)
Γ ` a : A. Given Γ ` A type and JAK = Aρ, the interpretation of a is a family
of elements aρ ∈ Aρ for each I : C and ρ ∈ Γ(I), satisfying aρf = a(ρf) for all
f : J → I.

For A ∈ Ty(Γ), one defines the context extension Γ.A by: (Γ.A))(I) = {(ρ, u) |
ρ ∈ Γ(I), u ∈ Aρ} for any I : C, and (ρ, u)f = (ρf, uf) for f : J → I. The
canonical projections are given by p(ρ, u) = ρ, and q(ρ, u) = u. One could check
that these definitions indeed satisfy conditions required by the definition of a CwF.

3.2.3 Interpreting dependent types

With the basic framework set up, we now proceed to find interpretations for Π
and Σ.

Given Γ ` A type and Γ;x : A ` B type, one can find an interpretation for
Γ ` Π(x : A).B, i.e. the set (Π(x : A).B)ρ for I : C, ρ ∈ Γ(I). Often, we will
simply write ΠAB for Π(x : A).B (and similarly for Σ), as names are unessential
in our discussion; this can be formalized as a nameless syntax [Bru72].

37

Roughly speaking, the nameless syntax (often called de Bruijn indices) is
no more than replacing variable names with positional indices. For example, one
could consider the term λx.λy.x y; to convert this term into nameless/de Bruijn
form, one simply replaces the first occuring variable (x) with 0, the second (y)
with 1, and so on. Then, one obtains the nameless form of this term: λλ0 1.

Let ρ ∈ Γ(I). The elements w ∈ (ΠAB)ρ are families of functions w =
{wf}f :J→I , indexed by functions f : J → I, where J : C, such that wfu =
wf (u) ∈ B(ρf, u) for each u ∈ A(ρf), where J : C and f : J → I, and such that
(wfu)g = wfg(ug) for any g : K → J .

For such a family w ∈ (ΠAB)ρ, define wf ∈ (ΠAB)(ρf), f : J → I to be

(wf)gu = wfgu ∈ B(ρfg, u)

for any J : K → J , u ∈ A(ρfg). One can verify that wid = w and wfg = w(fg).
Next, one needs to define the interpretation for the constructor for Π, λ. Again,

using the nameless syntax, given Γ; a ` b : B, one would like to define the inter-
pretation of Γ ` λb : ΠAB, i.e. the element (λb)ρ ∈ (ΠAB)ρ for ρ ∈ Γ(I). (λb)ρ,
like (ΠAB)ρ, is also defined as a family of functions indexed by f : J → I. For
u ∈ A(ρf), there is

((λb)ρ)fu = b(ρf, u) ∈ B(ρf, u).

This well-defined as

(((λb)ρ)f)gu = ((λb)ρ)fgu = b(ρfg, u) = ((λb)(ρf))gu

using the identity

(((λb)ρ)fu)g = (b(ρf, u))g = b(ρ(fg), ug) = ((λb)ρ)fg(ug)

for any g : K → J .
Finally, one defines the semantics of application. Given Γ ` u : ΠAB and

Γ ` v : A, one defines (u v)ρ = (uρ)id(vρ) ∈ B(ρ, vρ). Note that B(ρ, vρ) =
B(id, v)ρ = B[v]ρ, meaning that this definition respects substitution. Moreover,
there is

((λb) v)ρ = ((λb)ρ)id(vρ) = b(ρ, vρ) = b[v]ρ

meaning that our definitions respect β-reduction. Similarly, one can also check the
rules respect η using the commutativity conditions given previously.

Σ-types are much easier to interpret; their interpretation is based on the exis-
tence of products in our semantic category (a category of presheaves, which is a
CCC). For Γ ` A type and Γ;A ` B type, one defines define

(ΣAB)ρ = {(a, b)|a ∈ Aρ, b ∈ B(ρ, a)}

where ρ ∈ Γ(I), I : C. For f : J → I, we define (a, b)f = (af, bf).
The interpretation of the type former (−,−) is also defined elementwise. If

Γ ` a : A and Γ;A ` b : B, we define (a, b)ρ = (aρ, bρ). Similarly, for fst and snd,
we define (fst(p))ρ = a and (snd(p))ρ = b if pρ = (a, b). One can verify that this
validates the necessary reduction rules by calculation.

38

3.2.4 Universes

The presheaf model validates universes à la Tarski, but not cumulative universes
à la Russell. The interpretation of the universe hierarchy requires a countable
hierarchy of universes in the underlying set theory; one can achieve this using,
e.g., Grothendieck universes. We refrain from discussing the fine points of set
theory, but refer the interested reader to [Shu08] for a discussion of the potential
set-theoretic issues.

Let us we have a set-theoretic hierarchy of universes, U0 ⊆ U1 ⊆ U2 ⊆ ..., which
might be Grothendieck universes or universes defined using other set-theoretic
techniques. This approach of interpreting type-theoretic universes by “lifting” set-
theoretic universes was proposed by Hofmann and Streicher [HS97]; here we follow
Huber’s exposition [Hub16] again.

We begin with the small types, i.e., the types A such that Γ ` A type0. We
interpret this using small sets, i.e., members of U0: that is, if Γ ` A type0, then
we interpret it as Aρ ∈ U0. Next we interpret the universe of small types, U0 in
the empty context; this is equivalent to giving a context U which interprets the
context {U0}.

We can define this using the Yoneda embedding: for each I : C, we define U(I)
to be Ty(yI), such that the members are small. Alternatively, it is the collection of
U0-valued (i.e., small-set valued) presheaves on

∫
C yI, which is in turn equivalent to

C/I [nLa21a]. In other words, U(I) consists of the small types A, each represented
by a collection {Af} indexed by f : J → I, J : C.

For each small type Γ ` A type0, we need to have a term Γ ` pAq : U0,
which is the code of A, and for each Γ ` T : U0, we need to have a (small) type
Γ ` El(T) type0, such that El(−) and p−q are inverses of each other.

First, we define the interpretation of El(−). Given Γ ` T : U0, we have a
small type Γ ` El(T) type0. For any ρ ∈ Γ(I), we have Tρ ∈ U(I), and we define
(El(T))ρ = (Tρ)idI , which is a small set. For any f : J → I, we define the map
(El(T))ρ→ (El(T))ρf as the map (Tρ)id → (Tρ)f .

Then we define the interpretation of the quoting operator, Γ ` pAq : U0,
given a small type Γ ` A type0. For any ρ ∈ Γ(I), we define pAqρ ∈ U(I) as:
(pAqρ)f = A(ρf) for any f : J → I. One can verify the axioms for quoting and
unquoting via calculation.

We have demonstrated the construction of the model for universes at level 0;
inductively applying this procedure yields models for the entire universe hierarchy.

So far, we have given Π types, Σ types and universes interpretations in the
presheaf model for MLTT. However, one thing is still missing: identity types. The
problem here is that although one could interpret identity types in the presheaf
model, the behavior of this interpretation is somehow different from what we have
promised: the presheaf model validates extensional, rather than intensional iden-
tity types as defined in subsection 3.1.3, a distinction which we will explain in
the next chapter. The presheaf axioms also validates some axioms that are not
provable from the axioms of the identity type as we have define. The attempts
to deal with these problems gave rise to homotopy type theory [Uni13], an
approach to type theory based on methods originating in algebraic topology and
higher category theory.

Finally, we note that the presheaf model is a sound model of MLTT, so it is a
“safe” model to use. However, the proof is long and technical, so we omit it here

39

and refer to the interested reader to [Hof97] for details.

3.3 Other models of MLTT

There are many other models of MLTT. Perhaps one of the earliest models of
MLTT was the model in locally cartesian closed categories, which we define
below:

Definition 3.3.1 (locally cartesian closed categories). A category C is locally
cartesian closed (LCCC) if it has finite limits, and for each object C : C, the slice
category C/C is cartesian closed.

Seely showed in [See84] that models of MLTT (minus universes) can be con-
structed in any LCCC. Particularly, every topos is LCCC, since the slice categories
of toposes are again toposes, which are CCCs. Thus, the presheaf model given
above could be considered a special case of the LCCC model.

However, the LCCC model given by Seely suffers from a coherence problem,
which resulted in other models, particularly those based on CwFs, to be preferred
over the LCCC model. However, LCCCs are the “simplest” models of MLTT, in
the sense that there is a biequivalence between the category of Martin-Löf type
theories and the (2-)category of LCCCs [CD11].

Awodey and Warren proposed a model of MLTT in Quillen-style model cate-
gories [AW09], which are a class of categories used in homotopy theory. Since a
model category can be considered as the presentation of an (∞, 1)-category, this
suggests a connection between higher category theory and MLTT, which will be
further explored in the next chapter. For the theory of model categories, we refer
the interested reader to Appendix A of [Lur09].

Hofmann and Streicher gave a model of MLTT in the category of groupoids [HS95],
or categories in which every morphism is invertible. This is essentially another in-
stance of the interpretation of MLTT in CwFs, with C chosen to be the category
Grpd of groupoids. However, this model is of particular interest, for reasons we
will see in the coming chapter.

As our model of MLTT was based on presheaves, the natural question to ask is
whether this model can be extended to categories of sheaves. The answer is posi-
tive [Coq12], and such a sheaf model was used effectively to prove some indepen-
dence results in type theory [Man16]. However, this model has problems with uni-
verses; as a solution, one could replace sheaves with stacks, or 2-sheaves [CMR17].

40

Chapter 4

The identity type and the
intensional-extensional dichotomy

4.1 Intensional and extensional type theory

In the previous chapter, we have introduced the identity type in MLTT via the
refl constructor and the J rule. The identity type, however, was taken to be the
same as any other type: for example, there might be many terms of type a =A b,
just like there may be many functions from a type A to another type B.

From a constructivist perspective, this can be desirable, as one might want
to discern between different proofs of the same proposition. However, usually in
mathematics, equality is a unitary concept; there isn’t a notion of a term equal
to another term in “many different ways”. Moreover, the concept of identity is
mathematically “opaque”; from the perspective of a mathematician using a proof
of equality, nothing is changed if one replaces a proof with another proof. In other
words, all proofs are observationally equivalent. Therefore, one may want to add
a (type-theoretic) axiom, i.e. a primitive term, stating that all proofs of identity
are indeed equal. This axiom is called uniqueness of identity proofs, often
abbreviated as UIP:

UIP : ∀(A : Ui).∀(x, y : A).∀(p, q : x =A y).p =x=Ay q.

This is also often stated in an equivalent form, which is due to Streicher [Str93],
also called “axiom K”:

K : ∀(A : Ui).∀(x : A).∀(P : x =A x→ Ui).(P (reflx)→ ∀(h : x =A x).P (h)).

For those familiar with computer science, K also has a computational interpreta-
tion as the basis for pattern matching on dependent types [GMM06], while UIP is
non-computational.

The absence of UIP can have some rather unexpected results. Consider the
following variant of the equality type, often called heterogeneous equality :

Wf-HEq

Γ ` a : A Γ ` b : B

Γ ` a ≈A,B b type

with the same constructor refl and eliminator J . Naturally, one may think that
this is equivalent to normal equality, as it would be impossible to construct a term

41

of a ≈A,B b when A and B are not in fact equal types. However, rather surprisingly,
it is impossible to prove that a ≈ b implies a = b without invoking UIP or K.

Of course, one may also desire the principle of functional extensionality, mean-
ing that two functions are equal if they are equal at any points, which holds by
definition in set theory but cannot be proven from the rules of MLTT:

funext : ∀(X, Y : Ui).∀(f, g : X → Y).(∀(x : X).fx =Y gx)→ f =X→Y g.

Another concern with MLTT as presented in the previous chapter is that the
judgmental equality is “too weak”; it is not the case that all terms that are propo-
sitionally equal are definitionally equal. In other words, it might be the case that
there is a term p such that Γ ` p : x =A y, while it is not true that Γ ` x ≡ y : A.
In other words, there are terms that are “in fact” equal which our system does not
treat as being equal. A natural solution is to add the following rule, often called
equality reflection (Figure 4.1). Using the equality reflection rule, it is possible
to prove UIP as a theorem [Hof95].

Eq-Ref

Γ ` p : x =A y

Γ ` x ≡ y : A

Figure 4.1: Equality reflection

Adding the equality reflection rules makes MLTT extensional, meaning that
observationally equal terms are considered fully equal. Unlike MLTT as presented
in the previous chapter, which has a straightforward decision procedure, typing of
terms in extensional MLTT is no longer decidable [Hof95], although it is still pos-
sible to check for the validity of a given proof tree. On the contrary, a type theory
without such a rule is said to be intensional, meaning that intensional/defini-
tional equality is considered separate from observational/external equality.

Adding UIP or axiom K as well as functional extensionality gives an intensional
type theory some properties akin to extensional type theory while typing remains
decidable. Sometimes, type theories with UIP and functional extensionality are
called propositionally extensional, although these type theories are technically still
intensional.

4.2 The identity type in the presheaf model

We did not give the construction of the identity type in the presheaf model in the
previous chapter, since the behavior of the identity type “is not as expected”. In
fact, the presheaf model validates extensional equality, i.e., the interpretation of
the identity type satisfies

For Γ ` A type, Γ ` x : A and Γ ` y : A, we need to define the set (x =A y)ρ.
We define this by passing to set-theoretic equality, by setting (x =A y)ρ = {∗}
the singleton set when xρ = yρ, and the empty set ∅ otherwise. Then, for any
Γ ` x : A, we can define (reflx)ρ = ∗ ∈ (x =A y)ρ. We don’t give the interpretation
for J here, but it can also be given by a similar approach.

42

Clearly, our presheaf model validates UIP, because the interpretation of any
term Γ ` p : x =A y must be pρ = ∗ ∈ (x =A y)ρ. It also validates equality re-
flection, because we define the interpretation of (x =A y) using the interpretations
xρ and yρ, and thus observational equality is equivalent to definitional equality,
which is exactly what equality reflection proposes.

4.3 Towards homotopy type theory

The presheaf model is a model for extensional type theory, so we naturally wonder
if there are models for intensional type theory. However, most models for type the-
ory interpret extensional type theory: just as in the presheaf model, propositional
equality can be considered essentially an instance of the equalizer construction,
while definitional equality is given by the equality of the underlying set/mor-
phism [Mai05]. The universal property for the equalizer construction essentially
guarantees uniqueness of identity proofs, and, furthermore, equality reflection.
The first model of MLTT given by Seely [See84] was extensional; essentially all
models based on LCCCs/toposes are extensional.

The first model of MLTT which only validates intensional identity is the
groupoid model of Hofmann and Streicher [HS95]. In this model, contexts are
interpreted as groupoids, or categories where all morphisms are invertible, and
types as groupoid-valued functors. It is possible to prove that UIP is not validated
by this model, which was also the first proof that UIP is independent from the
rules of intensional type theory [HS95].

The other models for intensional type theory all have origins in algebraic topol-
ogy, requiring a new way to think about identity types. Next, we introduce this
novel approach to type theory, homotopy type theory (HoTT), which also high-
lights why intensional type theory is desirable in its own.

4.3.1 Intensional type theory and higher categorical struc-
ture

To motivate homotopy type theory, we briefly introduce the language of higher
categories. Higher category theory begins with the following observation from
algebraic topology. Consider a topological space X, and we can construct its
fundamental groupoid Π0(X): the objects are the points of X, and the morphisms
between p and q are the paths between p and q.

A path between p and q is just a continuous function f : [0, 1] → X such
that f(0) = p and f(1) = q. It is well-known in topology that one can equip
the set of such continuous functions via the compact-open topology; therefore
we can consider paths of paths, and paths of paths of paths, and so on1. This
construction can be repeated indefinitely, so we obtain a groupoid where we have
morphisms, morphisms of morphisms (2-morphisms), morphisms of 2-morphisms
(3-morphisms), etc., culminating in an∞-groupoid. We can also generalize this to
general categories, i.e. 2-categories, 3-categories, and higher categories. We don’t
give the precise definitions of 2-groupoids, 2-categories, and so on here, but the
interested reader can refer to [Bae97].

1In fact there are some coherence issues which we will not describe here.

43

Many categories have canonical higher category structures. One example is the
fundamental groupoid of a space, as we have mentioned above. Another example is
Cat, the category of categories, which is a 2-category: a 1-morphism is a functor,
and a 2-morphism between 1-morphisms is a natural transformation.

However, there are some issues with the näıve definition. We can make the
definition precise by using some insights from algebraic topology, following [Lur09].
Let ∆ be the simplex category, or the category of abstract simplicial complexes
and simplicial maps. More directly, the objects of ∆ are the totally ordered sets
[n], and the morphisms are weakly order-preserving maps. A simplicial set is a
presheaf on ∆. To any category C, we can obtain a simplicial set N(C) called the
nerve of C:

Definition 4.3.1 (the nerve of a category (section 1.1.2, [Lur09], [nLa21b])). Note
first that ∆ is a full subcategory of Cat, as a simplex, considered as a poset, is a
category. The nerve of a small category C is the simplicial set given by:

N(C) : ∆op ↪→ Catop Hom(−,C)−−−−−→ Set.

N(−) defines a functor (called the nerve functor) from the category Cat of
(small) categories to the category of simplicial sets. Particularly, the nerve func-
tor defines a fully faithful inclusion from Cat to Cat∞ (the “category” of ∞-
categories), which also has a left adjoint which sends every ∞-category to its
fundamental category (cf. proposition 1.2.3.1, [Lur09]).

We have the following result on the relationship between nerves of categories
and simplicial sets:

Proposition 4.3.1. Let K be a simplicial set. Then the following conditions are
equivalent:

(1) there exists a small category C and an isomorphism K ∼= N(C);

(2) for each 0 < i < n and each diagram

Λn
i K

∆n

there is a unique dotted arrow such that the diagram commutes. Here, ∆n is
the standard n-simplex, and Λn

i is the ith horn, obtained from ∆n by deleting
the interior and the face opposite the ith vertex.

Proof. Proposition 1.1.2.2 in [Lur09].

The second condition in Proposition 4.3.1 above is called the extension condi-
tion, and the morphism ∆n → K is called the extension of Λn

i ↪→ ∆n. We can
then define an ∞-category as (Definition 1.1.2.4 in [Lur09]):

Definition 4.3.2 (∞-category). An ∞-category, or precisely (∞, 1)-category, is
a simplicial set K such that for any 0 < i < n, any map f0 : Λn

i ↪→ ∆n admits an
extension f : ∆n → K.

44

It is possible to define many concepts and constructions in ∞-categories anal-
ogous to regular categories; for details, see chapter 1.2 of [Lur09].

Homotopy type theory begins with the observation that in intensional type
theory, there is an ∞-groupoid structure on any type generated by the identity
type [Uni13]. Given a type A and x, y : A, we have a groupoid structure on A
where the morphisms are given by terms of type x =A y. Furthermore, for any
p, q : x =A y, we can form the 2-morphisms, which are terms of type p =x=Ay q;
repeating this construction gives us an ∞-groupoid structure on A. A recent
result [AFS21] shows that this correspondence is indeed an isomorphism, in that
the universe of types is isomorphic to the type of∞-groupoids as defined internally
in intensional type theory.

This is another way to understand why conventional categorical models of type
theory support only extensional identity types: there is not enough structure to
support this extra groupoid structure in a 1-category; Grpd is a 2-category and
is enough to support part of this groupoid structure on the types (we usually say
that it is “2-truncated”) and refute UIP.

4.3.2 The univalence axiom

As the name “homotopy type theory” suggests, another view of intensional type
theory is from the perspective of homotopy theory. Besides considering a type as an
∞-groupoid, we can also consider types and spaces, terms as points, and values of
x =A y as paths. Then, the values of type p =x=Ay q are 2-paths, and so on. Indeed,
Grothendieck has conjectured [Gro83] that the ∞-groupoids are equivalent to the
topological spaces, for some well-behaved notation of ∞-groupoid. (Kapranov
and Voevodsky have “proved” this hypothesis for some particular notion of ∞-
groupoid [KV91], but their proof was later found to be incorrect. This became a
motivation for the development of HoTT.) We follow chapter 2 of [Uni13] in this
exposition leading to the definition of the univalence axiom.

Let P : A → U be a type family, and f, g : Π(x : A).P (x). Then, we define a
homotopy as a term of the type

(f ∼ g) := Π(x : A).(f(x) = g(x)).

Just as in homotopy theory, we consider things “up to coherent higher homo-
topies”. That is, given a function f : A → B, we consider its inverses “up to
coherent higher homotopies”, or quasi-inverses. This corresponds to the concept
of “weak ∞-groupoid”, in which composition of morphisms satisfy associativity
only up to some notion of equivalence; an example would be the composition of
paths in topological spaces. We say that f is a weak equivalence if there are func-
tions g, h : B → A such that f ◦ g ∼ idB and h ◦ f ∼ idA. In the language of type
theory, we have a term of type

isequiv(f) :=
(
Σ(g : B → A).(f ◦ g ∼ idB)

)
×
(
Σ(h : B → A).(h ◦ f ∼ idA)

)
and we write A ∼= B if there is an equivalence f , i.e., A ∼= B := Σ(f : A →
B).isequiv(f).

The axiom of univalence states that equivalent terms may be identified, or
in type-theoretic language:

univalentU : (A =U B) ∼= (A ∼= B).

45

We say a universe U is univalent if it satisfies this axiom. This allows us to, for
example, identify isomorphic structures (such as groups) and to transport prop-
erties across the equivalence. This is a powerful axiom which corresponds to our
intuition in subjects like algebra, but it is not compatible with UIP (Theorem 7.2.1
in [Uni13]). Usually, by “homotopy type theory”, we mean intensional type theory
where the universe of types is univalent.

4.3.3 A word on models

Just as intuition provides, homotopy type theory (and indeed intensional type the-
ory itself) corresponds to (∞, 1)-categories, and more precisely (∞, 1)-toposes [Lur09].
Shulman showed that all Lurie-style (∞, 1)-toposes indeed support a univalent uni-
verse [Shu19]. The model of HoTT itself, however, is given by a 1-category which
presents an ∞-category in some way. The earliest model was given by Voevodsky
and was based on simplicial sets (an overview was given in [KL12]). A constructive
model based on cubical sets was given by Bezem, Coquand, and Huber [BCH14].
Both models are based on the classic presheaf model of type theory, but essentially
limit the interpretation of types to certain presheaves satisfying some condition.

46

Chapter 5

Elementary toposes and the
Calculus of Constructions

5.1 The universe of propositions

In the previous chapter, it is showed that intensional type theory is a setting
for proof-relevant mathematics, and adding either UIP/K or equality reflection
makes identity types proof-irrelevant. However, identity propositions are not the
only kind of propositions; there may be other propositions which may be of any
type. Of course, one cannot introduce UIP-like axioms for any type, as this will
be absurd, so a natural thought would be to separate types that represent logical
propositions from other types. This could be formalized in a universe separate from
Ui, which is usually called Prop, lying in the universe hierarchy at the same level
as U0, that is to say Prop : U1 (in Russell-style notation). Since Props represent
logical propositions, hereafter we will use the convention that ∀ and ∃ are used for
types in Prop, while Π and Σ are used for regular types (or when the type is in
either Prop or Ui.

One might ask why there isn’t a countable hierarchy of Prop universes, just like
the Ui hierarchy. The answer is that Prop is usually taken to be impredicative,
i.e. a quantification over Prop is still a Prop. Consider, e.g. the type Π(T : Ui).T ;
this type has type Ui+1, although it deals only with types of level ≤ i. One could,
however, not allow this type to have type Ui, as one will run into Girard’s paradox
as alluded to before. On the other hand, it is permissible that (∀(T : Prop).T) :
Prop, as long as a value of a type in Prop is not used to compute a value of a type
in the normal universe hierarchy. That is to say, we allow rules like

Wf-Π-*
Γ ` A type∗i Γ;x : A ` B type∗i

Γ ` Π(x : A).B : Prop

where Γ ` A type∗i means that A is either a type at universe level i, or a proposition,
under Γ. That is to say, if a proposition is used to construct a type, then the
constructed type can only be a proposition.

The impredicative universe Prop is proposed by Coquand and Huet [CH88] to
add some form of impredicativity to MLTT. Originally, Coquand and Huet’s Prop
universe was not proof-irrelevant, however in this thesis we always take Prop to
be proof-irrelevant, that is, Prop satisfies the following axiom (called either proof

47

irrelevance or propositional extensionality in the literature):

proof irrelevance : ∀(P : Prop).∀(p, q : P).p = q.

We can go further by supporting definitional proof irrelevance, which amounts
to adding the following rule:

Prop-Irrel
Γ ` P : Prop Γ ` p, q : P

Γ ` p ≡ q : P
.

Of course, in extensional type theory, propositional and definitional proof-irrelevance
are equivalent. Since we are working with extensional type theory in the rest of
this chapter, we don’t distinguish between propositional and definitional proof-
irrelevance.

Note that different authors mean different things by Prop: an impredicative
universe, as in [CH88], a proof-irrelevant (but predicative) universe, or both. In
this thesis, Prop is always both impredicative and proof-irrelevant. MLTT with
universes, identity types, and Prop is often called the calculus of constructions
(CoC), a name first proposed in [CH88].

5.2 The correspondence between calculus of con-

structions and elementary toposes

In this section, we will prove what could be considered the central result of this
thesis: a elementary topos corresponds to the extensional calculus of constructions
with an impredicative, proof-irrelevant Prop. This section, and in fact the entire
thesis, can be seen as an extended answer to a discussion on the Coq-Club mailing
list [Sem21], although all concepts we use are known in the literature.

We proceed by showing that a CwF can be constructed from any (elementary)
topos.

Proposition 5.2.1. Any elementary topos E supports a CwF structure.

Proof. The construction is based on example 6.14 in [Pit00], but the original expo-
sition constructs a category with attributes, which is an older formalism equivalent
to that of CwFs. Here, we translate the construction to the modern language of
CwFs. The translation method is due to Hofmann (definition 3.10 in [Hof97]), but
the details are original.

Let Γ : E be an object of E , i.e. a context. We define Ty(Γ) as the collection of
all pairs A = (A, a), where A : E and a : Γ× A → Ω. Here, Ω denotes the object
of truth values in E , i.e. the codomain of the subobject classifier. Γ.A is defined
as the pullback of a along the subobject classifier 1� Ω:

Γ.A Γ× A

1 Ω

a

is a pullback square.

48

The pullback diagram above gives us a morphism Γ.A→ Γ× A. We compose
this with fst to obtain the canonical projection p(Γ;A) : Γ.A → Γ. For any
morphism f : ∆→ Γ, we define (A, a)[f] = (A, a ◦ (f × idA)).

Tm(Γ;A) is the collection of sections (i.e. right inverses) of p(Γ;A), i.e. the
collection of morphisms g : Γ→ Γ.A such that p ◦ g = idΓ.

The only missing part is the construction of the term q(Γ;A) ∈ Tm(Γ.A;A[p(Γ;A)],
which is a morphism Γ.A→ Γ.A.A[p] that is a section of p : Γ.A.A[p]→ Γ.A. This
is a bit involved, but we may use the fact that the following diagram commutes
and is a pullback square (proposition 3.9 in [Hof97]):

Γ.A.A[p] Γ.A

Γ.A Γ

p

p

p(Σ;A)

p(Σ;A)

,

and the fact that a diagonal map gives rise to a section.

Next, we informally explain the interpretation of type constructors in the topos
model, roughly following [Mai05] The semantics of Π, Σ and universes follow the
generic CwF model construction and is similar to the corresponding constructions
in the presheaf model, and we give only a brief description here. The Σ and
identity types have simple interpretations: ΣAB is interpreted as the categorical
product A× B, and x =A y can be interpreted as the equalizer of the morphisms
that represent x and y. The required maps can be obtained by factoring through
the pullback diagram above. Both could be interpreted in any topos, as a topos
has all finite limits.

Π-types are much more involved, as they are interpreted by the right adjoint
to the pullback functor [Mai05]. Consider any pullback square in a topos C:

Y X

B A

f ′

g

f

the pullback along g is functorial; it induces a functor f ∗ : C/A → C/B called
the pullback functor (or the base change functor, often preferred by algebraic ge-
ometers). If this functor has a right adjoint Πf : C/B → C/A, then the category
can interpret Π-types. Indeed, in every topos, any pullback functor has a right
adjoint (theorem 2 in Section IV.7, [MM92]). Therefore, any topos can interpret
the Π-types.

The universe hierarchy actually requires more structure in the topos; we need
the notion of universes in a topos. This is discussed in [Str05], and we refer
interested readers to that article. However, we note that many toposes, e.g. Set
and presheaf/sheaf toposes, do have universes inherited from the underlying set
theory (e.g. Grothendieck universes).

The impredicative, proof-irrelevant universe Prop is interpreted by Ω, as [Mai05]
shows. A note on Prop’s is that we need this universe to be Tarski-style as well,
so we need quoting and unquoting as well.

Another way to give semantics to Prop using the subobject classifier is to do
so via the subset types, which one could understand as the a modification of the

49

dependent products Π(x : A).P (x), where P : A→ Prop is a family of propositions,
and where snd is not defined. We often write this type as {x : A | P (x)}, just like
subsets in set theory. The existence of subset types is equivalent to the existence
of proof-irrelevant Prop, as one can always form the subset type where A is the
one-element type. We can consider these types as subobjects in the topos-theoretic
sense. That is, given A, X = {x : A | P (x)} can be interpreted as a subobject
X � A of A, with the associated morphism x : Γ×X → Ω defined by composing
the subobject morphism with a. By calculation, it is possible to show that the
subobject classifier gives an interpretation of subset types, which in turn gives a
semantics to Prop.

50

Bibliography

[AFS21] Antoine Allioux, Eric Finster, and Matthieu Sozeau. “Types are inter-
nal ∞-groupoids”. In: 36th Anual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2021). Ed. by Daniele Gorla and Leonid
Libkin. IEEE Computer Society, 2021. url: https://hal.inria.fr/
hal-03133144/document.

[AW09] Steve Awodey and Michael A. Warren. “Homotopy theoretic models of
identity types”. In: Mathematical Proceedings of the Cambridge Philo-
sophical Society 146 (2009).

[Awo10] Steve Awodey. Category Theory. 2nd ed. Oxford University Press,
2010.

[Bae97] John C. Baez. “An introduction to n-categories”. In: Category Theory
and Computer Science. Ed. by Eugenio Moggi and Giuseppe Rosolini.
Springer-Verlag, 1997.

[BCH14] Marc Bezem, Thierry Coquand, and Simon Huber. “A Model of Type
Theory in Cubical Sets”. In: 19th International Conference on Types
for Proofs and Programs (TYPES 2013). Ed. by Ralph Matthes and
Aleksy Schubert. Vol. 26. Leibniz International Proceedings in Infor-
matics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014, pp. 107–128.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[Bru72] N.G. de Bruijn. “Lambda Calculus Notation with Nameless Dummies:
A Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem”. In: Indigationes Mathematicae 34 (1972).

[CCD20] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories
with Families: Unityped, Simply Typed, and Dependently Typed. 2020.
arXiv: 1904.00827 [cs.LO]. url: https://arxiv.org/abs/1904.
00827.

[CD11] Pierre Clairambault and Peter Dybjer. “The Biequivalence of Locally
Cartesian Closed Categories and Martin-Löf Type Theories”. In: TLCA
2011: Typed Lambda Calculi and Applications. Ed. by Luke Ong. Springer-
Verlag, 2011.

[CH88] Thierry Coquand and Gérard Huet. “The Calculus of Constructions”.
In: Information and Computation 76 (1988).

51

https://hal.inria.fr/hal-03133144/document
https://hal.inria.fr/hal-03133144/document
https://arxiv.org/abs/1904.00827
https://arxiv.org/abs/1904.00827
https://arxiv.org/abs/1904.00827

[CMR17] Thierry Coquand, Bassel Mannaa, and Fabian Ruch. “Stack semantics
of type theory”. In: 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2017). IEEE Computer Society, 2017.

[Coq12] Thierry Coquand. Sheaf model of type theory. 2012. url: http://www.
cse.chalmers.se/~coquand/sheaf.pdf.

[Dyb96] Peter Dybjer. “Internal type theory”. In: Types for Proofs and Pro-
grams. TYPES ’95. Springer, 1996.

[Gir72] Jean-Yves Girard. “Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur”. Thèse d’État. 1972.

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna. “Eliminat-
ing Dependent Pattern Matching”. In: Algebra, Meaning, and Compu-
tation: Essays dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday. Vol. 4060. Lecture Notes in Computer Science. Springer-
Verlag, 2006.

[Gro71] Alexander Grothendieck. “Catégories fibrées et descente”. In: Revêtements
étales et groupe fondamental (SGA 1). Vol. 224. Lecture Notes in
Mathematics. Springer-Verlag, 1971.

[Gro83] Alexander Grothendieck. Pursuing Stacks. Unpublished drafts, person-
ally communicated to Ronald Brown. 1983. url: https://thescrivener.
github.io/PursuingStacks/ps-online.pdf.

[Hof95] Martin Hofmann. “Extensional Concepts in Intensional Type Theory”.
PhD thesis. University of Edinburgh, 1995.

[Hof97] Martin Hofmann. “Syntax and Semantics of Dependent Types”. In:
Semantics and Logics of Computation. Ed. by Andrew M. Pitts and
Peter Dybjer. Cambridge University Press, 1997. Chap. 3.

[HS95] Martin Hofmann and Thomas Streicher. “The groupoid interpreta-
tion of type theory”. In: Twenty-five years of constructive type theory.
Vol. 36. Oxford Logic Guides. Oxford Univ. Press, 1995.

[HS97] Martin Hofmann and Thomas Streicher. Lifting Grothendieck Uni-
verses. Unpublished note. 1997. url: https://www2.mathematik.tu-
darmstadt.de/~streicher/NOTES/lift.pdf.

[Hu20] Jason Z. S. Hu. Categorical Semantics for Type Theories. 2020. url:
https://hustmphrrr.github.io/asset/pdf/comp-exam.pdf.

[Hub16] Simon Huber. “Cubical Interpretations of Type Theory”. PhD thesis.
University of Gothenburg, 2016.

[KL12] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of
Univalent Foundations (after Voevodsky). 2012. url: http://arxiv.
org/abs/1211.2851.

[KV91] Mikhail M. Kapranov and Vladimir A. Voevodsky. “∞-groupoids and
homotopy types”. In: Cahiers de topologie et géométrie différentielle
catégoriques 32 (1 1991).

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Categorical Logic.
Cambridge University Press, 1986.

52

http://www.cse.chalmers.se/~coquand/sheaf.pdf
http://www.cse.chalmers.se/~coquand/sheaf.pdf
https://thescrivener.github.io/PursuingStacks/ps-online.pdf
https://thescrivener.github.io/PursuingStacks/ps-online.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
https://hustmphrrr.github.io/asset/pdf/comp-exam.pdf
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1211.2851

[Lur09] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed.
Vol. 5. Graduate Texts in Mathematics. Springer-Verlag, 1998.

[Mai05] Maria Emilia Maietti. “Modular correspondence between dependent
type theories and categories including pretopoi and topoi”. In: Math-
ematical Structures in Computer Science 15 (6 2005).

[Man16] Bassel Mannaa. “Sheaf Semantics in Constructive Algebra and Type
Theory”. PhD thesis. University of Gothenburg, 2016.

[Mar72] Per Martin-Löf. An intuitionistic theory of types. Unpublished preprint.
1972. url: https://archive-pml.github.io/martin-lof/pdfs/
An-Intuitionistic-Theory-of-Types-1972.pdf.

[MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic.
Universitext. Springer-Verlag, 1992.

[nLa21a] nLab authors. category of elements. Revision 34. July 2021. url: http:
//ncatlab.org/nlab/show/category%5C%20of%5C%20elements.

[nLa21b] nLab authors. nerve. Revision 70. July 2021. url: http://ncatlab.
org/nlab/show/nerve.

[Pit00] Andrew M. Pitts. “Categorical Logic”. In: Handbook of Logic in Com-
puter Science, Volume 5. Ed. by Samson Abramsky, Dov M. Gabbay,
and Tom S. E. Maibaum. Oxford University Press, 2000.

[See84] R.A.G. Seely. “Locally cartesian closed categories and type theory”.
In: Mathematical Proceedings of the Cambridge Philosophical Society
95 (1 1984).

[Sel13] Peter Selinger. Lecture notes on the lambda calculus. 2013. arXiv:
0804.3434 [cs.LO].

[Sem21] Vincent Semeria. Is Coq a topos? Message to the Coq-Club mailing list.
2021. url: https://sympa.inria.fr/sympa/arc/coq-club/2021-
03/msg00013.html.

[Shu08] Michael A. Shulman. Set theory for category theory. 2008. arXiv: 0810.
1279 [math.CT].

[Shu19] Michael Shulman. All (∞, 1)-toposes have strict univalent universes.
2019. arXiv: 1904.07004 [math.AT].

[Spi14] David I. Spivak. Category Theory for the Sciences. The MIT Press,
2014.

[Str05] Thomas Streicher. “Universes in Toposes”. In: From Sets and Types to
Topology and Analysis: Towards practicable foundations for construc-
tive mathematics. Ed. by Laura Crosilla and Peter Schuster. Oxford
University Press, 2005.

[Str93] Thomas Streicher. “Investigations into Intensional Type Theory”. Ha-
bilitationsschrift. Ludwig Maximilian University of Munich, 1993.

[SU06] Morton Heine B. Sørensen and Pawe l Urzyczyn. Lectures on the Curry-
Howard Correspondence. Vol. 149. Studies in Logic and the Founda-
tions of Mathematics. Elsevier Science, 2006.

53

https://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-1972.pdf
https://archive-pml.github.io/martin-lof/pdfs/An-Intuitionistic-Theory-of-Types-1972.pdf
http://ncatlab.org/nlab/revision/category%20of%20elements/34
http://ncatlab.org/nlab/show/category%5C%20of%5C%20elements
http://ncatlab.org/nlab/show/category%5C%20of%5C%20elements
http://ncatlab.org/nlab/revision/nerve/70
http://ncatlab.org/nlab/show/nerve
http://ncatlab.org/nlab/show/nerve
https://arxiv.org/abs/0804.3434
https://sympa.inria.fr/sympa/arc/coq-club/2021-03/msg00013.html
https://sympa.inria.fr/sympa/arc/coq-club/2021-03/msg00013.html
https://arxiv.org/abs/0810.1279
https://arxiv.org/abs/0810.1279
https://arxiv.org/abs/1904.07004

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Uni-
valent Foundations of Mathematics. Institute for Advanced Study:
https://homotopytypetheory.org/book, 2013.

54

https://homotopytypetheory.org/book

	Categorical and topos-theoretic preliminaries
	Notation
	The Yoneda lemma
	A note on set theory

	Cartesian closed categories
	Toposes
	Geometric morphisms

	The simply-typed -calculus and cartesian closed categories
	The simply-typed -calculus
	The untyped -calculus
	Simple types
	The Curry-Howard correspondence

	STLC and cartesian closed categories
	Syntactic categories
	Interpreting STLC in CCCs
	The internal language of a category

	Dependent type theory and presheaf semantics
	Martin-Löf type theory
	Curry-Howard correspondence for MLTT
	Universes
	The identity type

	Presheaf semantics for MLTT
	Categories with families
	The presheaf model
	Interpreting dependent types
	Universes

	Other models of MLTT

	The identity type and the intensional-extensional dichotomy
	Intensional and extensional type theory
	The identity type in the presheaf model
	Towards homotopy type theory
	Intensional type theory and higher categorical structure
	The univalence axiom
	A word on models

	Elementary toposes and the Calculus of Constructions
	The universe of propositions
	The correspondence between calculus of constructions and elementary toposes

