
Formalizing OCaml GADT typing in Coq
Jacques Garrigue

garrigue@math.nagoya-u.ac.jp
Nagoya University

Graduate School of Mathematics

Xuanrui Qi

xuanrui@nagoya-u.jp
Nagoya University

Graduate School of Mathematics

Abstract
The principality of OCaml’s GADT type inference relies on

the concept of ambivalence, which allows to reject programs

whose typing is ambiguous. Yet, ambivalence itself requires

to use a graph view of types, making inductive reasoning

more difficult. In this talk, we present our ongoing work on

mechanizing the metatheory of a core language for mod-

ern OCaml and formally proving soundness and principality

for this core language. Our core language supports struc-

tural polymorphism, recursive types, and type-level equality

witnesses, which are the defining features of OCaml type

inference as of version 4.12. We have now proved subject

reduction for a meaningful subset of the reduction rules.
1

CCS Concepts • Software and its engineering → Se-
mantics; Data types and structures; Formal software
verification;

Keywords OCaml, formal specification, generalized alge-

braic datatypes

1 Introduction
Generalized algebraic datatypes (GADTs) have been anOCaml

language extension since version 4.00, and is now arguably

an integral part of theOCaml type system: prominent projects

built in OCaml, such as Coq [6] and Tezos [7], use GADTs

in production.

Type inference for GADTs is known to be a difficult prob-

lem, in particular when one wants principality. It is also

tricky to implement, and OCaml has seen a number of sound-

ness bugs over the years. We intend to address these prob-

lems by mechanizing the metatheory [1] of a core language

of OCaml, equipped with three defining features of the mod-

ern OCaml type system — structural polymorphism, recur-

sive types, and type-level equations — the last of which is

equivalent to GADTs.

Formally, OCaml GADTs are based on ambivalent type

inference [4], which offers principality. However, the sound-

ness of the ambivalent type system was obtained through a

translation into another type system. When trying to prove

subject reduction for ambivalent types with type annota-

tions in a more direct way, we actually discovered that it

failed, and that this failure came from a lack of principality

in the type inference. We have been able to fix this failure

1
A preliminary report on this work was presented at CoqPL’21 [5]. At that

point, we had not yet formally proved any property of the formalization.

This version adds new concepts, and concrete proofs.

by enforcing a well-formedness condition on graph types

containing rigid type variables.

We build ourwork on one of the authors’ previouswork [2],

which contains a formalized metatheory of a variant of ML

with structural polymorphism and recursive types; we ex-

tend the aforementioned work with rigid (i.e., “existential”)

type variables 𝑎 (distinct from flexible type variables 𝛼), type-

level equations over these rigid type variables, and a notion

of ambivalence [4] inside types, which denotes types whose

coherence relies on those type equations.

2 The bug, or “why subject reduction”
Early on in our formalization work, we discovered that there

was an error in the principality proof for ambivalence type

inference, which can be observed in the following OCaml

example (even using the -principal option).

type (_,_) eq = Refl : ('a,'a) eq;;

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w1 in let Refl = w2 in g 3;;
val f : ('a, 'b -> 'b) eq ->

('a, int -> int) eq -> 'a -> 'b

let f (type a b) (w1 : (a, b -> b) eq)
(w2 : (a, int -> int) eq) (g : a) =

let Refl = w2 in let Refl = w1 in g 3;;
val f : ('a, 'b -> 'b) eq ->

('a, int -> int) eq -> 'a -> int

The resulting type depends on the order in which the equa-

tions were used! Since the ambivalent type system does not

prioritize between equations according to such order, and

the two types are clearly not equivalent, this denotes a loss

of principality, which we could track back to a missing as-

sumption about ambivalent unification.

Fortunately, this can be fixed by “inheriting” ambivalence

from types to their subparts, i.e. not only the type of g, but

also that of g 3 should be ambivalent, and depend on the

equation used. This is now done in the upcoming OCaml

4.13, when using -principal. In OCaml’s implementation

this relies on a notion of scoping level, which made the

change easy.

Having already seen a hole in the proof, we would like to

be more certain of its principality. While adapting the full

fledge principality proof for structural polymorphism [2] is

a daunting task, proving subject reduction for a well chosen

set of rules is already a good hint. While the two notions

Jacques Garrigue and Xuanrui Qi

are independent, the proof of principality for ambivalent

types relies on the monotonicity of typing, i.e. replacing an

assumption by a more general one should not break typabil-

ity
2
. This is exactly what happens with 𝛽-reduction, as the

substituted term may have a more general type. However, to

make preservation possible, we also need to keep type anno-

tations in other reduction rules, since ambivalent typability

relies on these annotations.

(𝑀1 : 𝜏2 → 𝜏1) 𝑀2 −→ (𝑀1 (𝑀2 : 𝜏2) : 𝜏1)
(𝑀1 : 𝑟) 𝑀2 −→ (𝑀1 (𝑀2 : ?) : ?)

When 𝑟 is a rigid variable, we have to find annotations for

𝑀2 and (𝑀1𝑀2). This need itself suggests the solution: we

can introduce a notion of rigid path, which describes the

type corresponding to a subcomponent of a rigid variable.

(𝑀1 : 𝑟) 𝑀2 −→ (𝑀1 (𝑀2 : 𝑟 .dom) : 𝑟 .cod)

It turns out that seeing such rigid paths as ambivalent, since

they are only meaningful in presence of an equation 𝑟 =

𝜏1 → 𝜏2, is all we need to fix the formal type system.

3 Coq formalization
Our Coq formalization is essentially an extension of the for-

malization of structural polymorphism [2] to ambivalent

types [4]. While structural polymorphism distinguished be-

tween types and kinds, the latter being used to represent

polymorphic record or variant types, the ambivalent ap-

proach takes a more radical view. Now types are degenerate,

keeping only type variables 𝛼 , and all other type construc-

tors are represented by kinds 𝜅 (see Fig. 1)., which contain

a structural constraint 𝜓 , type variables corresponding to

children of the constructor, and a list 𝑟 of rigid paths. For

instance, here is the representation of the type (𝛽 → 𝛾) ∧ 𝑎,
corresponding to the ambivalent type being both the rigid

variable 𝑎 and a function type.

𝛼 :: (→, {dom ↦→ 𝛽, cod ↦→ 𝛾})𝑎, 𝛽 :: •a.dom, 𝛾 :: •a.cod ⊲ 𝛼

A typing judgment now uses three environments: a set 𝑄

of rigid equations, expressed using the classical arborescent

view of types, and containing only rigid variables; a kinding

environment 𝐾 mapping flexible type variables to kinds;

and a typing environment Γ mapping term variables to type

schemes.

𝑄 ;𝐾 ; Γ ⊢ 𝑀 : 𝛼

One can get a glimpse of the extra complexity by consid-

ering the auxiliary judgments required to define typing rules

2
Some type systems do not have monotonicity, and as a result they usually

cannot have principality of the type system itself, but only aweaker property,

such as principality of some typings.

𝜓 ::= → | eq | . . . structural constraint

𝐶 ::= • | (𝜓, {𝑙 ↦→ 𝛼, . . . }) node constraint

𝜅 ::= 𝐶𝑟 kind

𝑟 ::= 𝑎 | 𝑟 .𝑙 rigid variable path

𝜏 ::= 𝑟 | 𝜏 → 𝜏 | eq(𝜏, 𝜏) tree type

𝑄 ::= ∅ | 𝑄, 𝜏 = 𝜏 equations

𝐾 ::= ∅ | 𝐾, 𝛼 :: 𝜅 kinding environment

𝜎 ::= ∀𝛼.𝐾 ⊲ 𝛼 type scheme

Γ ::= ∅ | Γ, 𝑥 : 𝜎 typing environment

𝜃 ::= [𝛼 ↦→ 𝛼 ′, . . .] substitution

Figure 1. Type related notations

Var

𝑄 ⊢ 𝐾 𝑄 ;𝐾 ⊢ Γ 𝑥 : ∀𝛼.𝐾0 ⊲ 𝛼 ∈ Γ
𝐾,𝐾0 ⊢ 𝜃 : 𝐾

𝑄 ;𝐾 ; Γ ⊢ 𝑥 : 𝜃 (𝛼)

App

𝑄 ;𝐾 ; Γ ⊢ 𝑀1 : 𝛼 𝑄 ;𝐾 ; Γ ⊢ 𝑀2 : 𝛼2

𝛼 :: (→, {dom ↦→ 𝛼2, cod ↦→ 𝛼1})𝑟 ∈ 𝐾
𝑄 ;𝐾 ; Γ ⊢ 𝑀1 𝑀2 : 𝛼1

Use

𝑄 ;𝐾 ; Γ ⊢ 𝑀1 : 𝛼1 𝐾 ⊢ 𝛼1 : eq(𝜏1, 𝜏2)
𝑄, 𝜏1 = 𝜏2;𝐾 ; Γ ⊢ 𝑀2 : 𝛼

𝑄 ;𝐾 ; Γ ⊢ use𝑀1 : eq(𝜏1, 𝜏2) in𝑀2 : 𝛼

GC

𝑄 ;𝐾,𝐾 ′
; Γ ⊢ 𝑀 : 𝛼 FV𝐾 (Γ, 𝛼) ∩ dom(𝐾 ′) = ∅

𝑄 ;𝐾 ; Γ ⊢ 𝑀 : 𝛼

Figure 2. Selected typing rules

in Fig. 2.

𝑄 ;𝐾 ⊢ 𝜅 well-formedness of kinds

𝑄 ⊢ 𝐾 ∀𝛼 :: 𝜅 ∈ 𝐾, 𝑄 ;𝐾 ⊢ 𝜅
𝑄 ;𝐾 ⊢ 𝜎 well-formedness of type schemes

𝑄 ;𝐾 ⊢ Γ ∀𝑥 : 𝜎 ∈ Γ, 𝑄 ;𝐾 ⊢ 𝜎
𝐾 ⊢ 𝛼 : 𝜏 instantiation of tree types

𝐾 ⊢ 𝜃 : 𝐾 ′
well-kindedness of substitutions

All but the well-kindedness of substitutions were freshly

introduced for ambivalent typing.

4 Current status
Our Coq formalization can be found on GitHub [3]. We have

now proved preservation for the following reduction rules.

(𝜆𝑥.𝑀) 𝑉 −→ 𝑀 [𝑉 /𝑥]
let 𝑥 = 𝑉 in𝑀 −→ 𝑀 [𝑉 /𝑥]

𝑐 𝑉1 . . .𝑉𝑛 −→ 𝛿𝑐 (𝑉1, . . . ,𝑉𝑛)
(𝑀1 : 𝜏2 → 𝜏1) 𝑀2 −→ (𝑀1 (𝑀2 : 𝜏2) : 𝜏1)

(𝑀1 : 𝑟) 𝑀2 −→ (𝑀1 (𝑀2 : 𝑟 .dom) : 𝑟 .cod)
use Refl : eq(𝜏1, 𝜏2) in𝑀 −→ 𝑀

Formalizing OCaml GADT typing in Coq

The last three rules embody the semantics of ambivalence

and GADT typing. Preservation for any of them was not yet

proven in our previous report [5], partly because we had

not yet properly defined the instantiation of tree types and

a number of related notions.

Preservation alone does not entail soundness: we are yet

to prove preservation for the construct (type a) permitting

to turn a rigid type variable into a flexible one, and eventually

quantify it, so that progress cannot be proven for full pro-

grams. The main difficulty with flexibilization is that terms

lack the type information that should be substituted.

From here on, it actually seems simpler to prove sound-

ness through a translation of type derivations into a more

classical type system with explicit type instantiation, and

no tracking of ambivalence, and prove principality indepen-

dently of reduction. Both are new lines of work, but we can

now be relatively confident that the fundamental pieces are

in place.

Acknowledgments
We would like to thank the Tezos Foundation for funding

the Certifiable OCaml Type Inference (COCTI) project, of

which this work is part.

References
[1] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack,

and Stephanie Weirich. Engineering formal metatheory. In Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2008.

[2] Jacques Garrigue. A certified implementation of ml with structural poly-

morphism and recursive types. Mathematical Structures in Computer
Science, 25, 2015.

[3] Jacques Garrigue and Xuanrui Qi. A Coq formalization of ambivalent

types, 2021. https://github.com/COCTI/certint-amb.
[4] Jacques Garrigue and Didier Rémy. Ambivalent types for principal type

inference with gadts. In Programming Languages and Systems (APLAS),
2013.

[5] Xuanrui Qi and Jacques Garrigue. Towards a Coq specification for

generalized algebraic datatypes in OCaml. In Presentation at CoqPL’21,
January 2021.

[6] The Coq Development Team. The Coq proof assistant, 2021. https:
//coq.inria.fr.

[7] The Tezos Team. Tezos, 2021. https://tezos.com/.

https://github.com/COCTI/certint-amb
https://coq.inria.fr
https://coq.inria.fr
https://tezos.com/

	Abstract
	1 Introduction
	2 The bug, or ``why subject reduction''
	3 Coq formalization
	4 Current status
	Acknowledgments
	References

