
A Practical and Extensible Framework for Garbage Collection
Tracing

Extended Abstract

Xuanrui (Ray) Qi
Tufts University

Medford, Massachusetts
xqi01@cs.tufts.edu

ABSTRACT
This extended abstract presents a new tool for memory tracing, Ele-
phant Tracks II. Elephant Tracks II (or ET2) is a portable, modular
and extensible memory tracing tool designed for practical memory
tracing of garbage-collected programs, producing precise traces of
the program’s heap operations, including allocation, pointer muta-
tion, procedure entry & exit, and object deaths, using the Merlin
algorithm to compute death times. Unlike all previous tools, how-
ever, ET2 is capable to support multiple programming languages
by decoupling the tracing phase and the death time computation
phase. We describe some of the high-level design and low-level
implementation strategies employed to support this extensibility
and portability.

CCS CONCEPTS
• Software and its engineering → Garbage collection; Soft-
ware performance.

KEYWORDS
Tracing; garbage collection; Merlin algorithm; inter-language oper-
ability
ACM Reference Format:
Xuanrui (Ray) Qi. 2018. A Practical and Extensible Framework for Garbage
Collection Tracing: Extended Abstract. In Proceedings of SPLASH 2018 Stu-
dent Research Competition (SPLASH SRC’18). ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION
It is hard to trace the memory usage and behavior of programs
written in programming languages with automatic memory man-
agement semantics. Most of the time, this is not a problem. However,
there are cases where we want to know the details of memory usage,
such as when we want to debug memory leaks [2].

To trace the memory usage of such programs, one may use
dynamic analysis techniques. Specifically, the method of program
tracing, or “tracing” information about the execution of programs
using textual logs, is of special interest to us. With program tracing,
we can record the allocation of objects, the flow of pointers (i.e.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH SRC’18, November 2018, Boston, Massachusetts USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

pointer updates), pointer access, and data updates by instrumenting
the running program.

2 CHALLENGES
However, even with program tracing, the memory usage behavior
of automatically memorymanaged programs is not completely clear.
Specifically, the death time of objects, or the last time at which the
object is last accessible, is not obvious from the program’s execution
trace. Fortunately, the Merlin algorithm [1] gives us a method to
compute those death times, by doing a depth-first search on the
graph of dead objects, and propagating known information about
death times through the graph.

However, this pose us a serious problem in the implementation
of GC tracers: up until now, GC tracers have to perform death-time
computations during program execution, accessing the program’s
memory graph from time to time. This is a huge concern, because
it slows down the GC tracer significantly, rendering GC tracers
much less powerful than they should be. Our previous tool, Elephant
Tracks [6], can slow down programs by 500 to 1000 times. Moreover,
as Elephant Tracks works closely with the Java Virtual Machine, it
could only be used as a analysis tool for Java programs. A successor
to Elephant Tracks, AntTracks [3], is much more efficient, but
unfortunately it is built into the HotSpot Java Virtual Machine,
making its approach tedious to migrate to other programming
languages; moreover, it does not perform death time computation.
It is difficult to have both efficiency and inter-system operability
within a memory tracer.

Efficiency and extensibility of GC tracers are, thus, both major
challenges in garbage collection research. Without efficient GC trac-
ers, it is difficult to collect data about GC performance, for example.
Without extensible GC tracers, one has to implement from scratch
a tracer for each program runtime system, making the engineering
process tedious. Our main goal is, thus, to devise a new architecture
and, eventually, a GC tracing tool that is both efficient and extensible.
We believe that our new GC tracing framework, Elephant Tracks II,
is the only tracing tool that could easily be extended to different
programming platforms and different programming models.

3 IMPROVING EFFICIENCY
One could use the Merlin algorithm to compute the death time
of objects, but running the Merlin algorithm is costly because it
requires traversing the graph of dead objects at least once, on every
garbage collection [6]. This drastically slows down the GC tracer.
Moreover, the GC tracer must also keep a “shadow” copy of the
heap graph, drastically increasing memory usage.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


SPLASH SRC’18, November 2018, Boston, Massachusetts USA X. Qi

Nevertheless, it is possible to create an otherwise complete pro-
gram trace and generate death times from the otherwise complete
data [1]. In Elephant Tracks II, we use this approach to optimize
the time and space requirements of the GC tracer. For our Java
GC tracer, we use the JVM Tooling Interface [5] and the JNIF Java
bytecode manipulation library [4] to dynamically rewrite all classes
and instrument all code by adding calls to methods that generate
traces, from which we could compute the death times of objects.

To compute the death times, however, one needs to record extra
information beyond what is generally expected in GC traces. Specif-
ically, we need witness records, which tell us when objects were
accessed. When an object is no longer accessed and subsequently
garbage collected, we may assume safely that the last access times-
tamp recorded is the idealized death time of the object. For example,
if a object is last accessed at timestamp 20, we record 20 as the death
time of the object, even if it is not actually collected until timestamp
47. We add these witness records whenever an object is accessed: in
Java, for instance, whenever the object is directly accessed, passed
into a method, or when a instance method is invoked on the object.

Moreover, previously, foreign function calls via the Java Native
Interface were used for instrumentation calls [6], which results in
the abstraction barriers being broken frequently, and thus a lot of
overhead. However, in our implementation of the Java GC tracer,
we use Java to implement all instrumentation calls, which results
in less overhead and better efficiency overall. As a result of the
aforementioned improvements, our Java GC tracing tool has sped
up GC tracing by 5 to 50 times on a number of small benchmarks.

4 MODULARITY AND EXTENSIBILITY
Previously available GC tracing tools are not only inefficient, but
also not extensible. Particularly, most of them work only for one (or
a few) programming language implementations. However, given
that most programming languages implementations have a very
similar memory model at a low-level, one should be able to use the
same processor to compute death times and analyze traces.

Thus, we propose a modular GC tracing architecture, in which
a GC tracing tool consists of a language-specific frontend and a
language-agnostic backend. Separating the program tracing phase
(“frontend”) with the computationally heavy trace analysis phase
(“backend”) improves the performance of our tool, as expensive
computations are no longer computed at the tracing phase. This
design also allows for better modularity, which will, in turn, allow
us to increase the usability of our framework.

The frontend, as described above, is bundled to a specific runtime
system, and emits a complete trace of memory events (of course,
excluding death events) during an execution of a program. The
backend executes the Merlin algorithm on the trace, computes
death times, and could also be modularly extended to complete
other analysis tasks. With this modular design, we can support GC
tracing for more programming languages with much less effort, as
only a tracing frontend needs to be implemented. More specifically,
as long as access to the underlying object and pointer model in the
runtime system is available, it is technically possible to implement
an Elephant Tracks II frontend for that runtime system. For example,
Haskell as a programming language does not have pointers, but
the Glasgow Haskell Compiler uses pointer structures to represent

programming constructs such as thunks and closures; as a result,
we may perform memory tracing on these structures using the
Elephant Tracks II framework.

5 FUTUREWORK
Although our work on Elephant Tracks II has given promising
preliminary results, multiple future work directions remain. First of
all, more engineering work is required, especially on the frontend,
as it is tricky to instrument many Java language features (such as
reflection). We are also interested in porting Elephant Tracks II to
other programming languages, as well as implement more features
for the backend.

On the other hand, we are also interested in making sense of
our memory traces. Specifically, we hope to look for more domain-
specific patterns in memory traces, and using those traces to im-
prove garbage collectors. We are also interested in devising machine
learning methods to learn from GC traces. Overall, we believe that
memory traces contain a great wealth of knowledge, and Elephant
Tracks II can help us uncover this wealth more effectively, but cur-
rent methods of mining knowledge from traces are still inadequate.

6 CONCLUSION AND CONTRIBUTIONS
In this research, we present Elephant Tracks II, an extensible, ef-
ficient and practical framework for GC tracing, and present the
main techniques used in the implementation of Elephant Tracks
II. Although our research is still in a preliminary stage, we have
reached some positive results with our current implementation.

Overall, our contributions do not only include devising a new GC
tracing framework and methods for its implementation, but also in-
clude a new way to think about the architecture of program tracers
in general. Using our new modular architecture, we could poten-
tially make many program tracers more extensible and modular
with a moderate amount of engineering. This will shed a new light
on the implementation of dynamic program analyzers, in general.

ACKNOWLEDGMENTS
I would like to thank my research advisor, Professor Samuel Guyer,
as well as external collaborators on the Elephant Tracks project:
JC Beyler, Steve Blackburn, Man Cao, Wessam Hassanein, Kathryn
McKinley, Ryan Rose, and Leandro Watanabe, in alphabetical order.
I would also like to thank the National Science Foundation for
supporting this work in part.

REFERENCES
[1] Matthew Hertz, Stephen M. Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and

Darko Stefanović. 2006. Generating Object Lifetime Traces with Merlin. ACM
Trans. Program. Lang. Syst. 28, 3 (May 2006), 476–516. https://doi.org/10.1145/
1133651.1133654

[2] Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015.
MemInsight: Platform-independent Memory Debugging for JavaScript. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 345–356. https://doi.org/10.1145/
2786805.2786860

[3] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. 2015. Accurate and
Efficient Object Tracing for Java Applications. In Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering (ICPE ’15). ACM, New York,
NY, USA, 51–62. https://doi.org/10.1145/2668930.2688037

[4] Luis Mastrangelo and Matthias Hauswirth. 2014. JNIF: Java Native Instru-
mentation Framework. In Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines,

https://doi.org/10.1145/1133651.1133654
https://doi.org/10.1145/1133651.1133654
https://doi.org/10.1145/2786805.2786860
https://doi.org/10.1145/2786805.2786860
https://doi.org/10.1145/2668930.2688037


A Practical and Extensible Framework for Garbage Collection Tracing SPLASH SRC’18, November 2018, Boston, Massachusetts USA

Languages, and Tools (PPPJ ’14). ACM, New York, NY, USA, 194–199. https:
//doi.org/10.1145/2647508.2647516

[5] Oracle Corporation. 2013. JVM Tool Interface 1.2.3. https://docs.oracle.com/
javase/8/docs/platform/jvmti/jvmti.html. (2013). Accessed March 16, 2018.

[6] Nathan P. Ricci, Samuel Z. Guyer, and J. Eliot B. Moss. 2013. Elephant Tracks:
Portable Production of Complete and Precise GC Traces. In Proceedings of the
2013 International Symposium on Memory Management (ISMM ’13). ACM, New
York, NY, USA, 109–118. https://doi.org/10.1145/2464157.2466484

https://doi.org/10.1145/2647508.2647516
https://doi.org/10.1145/2647508.2647516
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://doi.org/10.1145/2464157.2466484

	Abstract
	1 Motivation
	2 Challenges
	3 Improving Efficiency
	4 Modularity and Extensibility
	5 Future Work
	6 Conclusion and Contributions
	Acknowledgments
	References

